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ABSTRACT

Context. As a special case of astrophysical MHD shock waves, the solar wind termination shock is typically treated using the MHD
jump conditions as they have been determined by Rankine and Hugoniot. A kinetic analysis becomes necessary for both a more
detailed view of the governing processes and a deeper understanding of the plasma behaviour.
Aims. In the case of a parallel shock, only an electric field can be considered as the main process decelerating the solar wind ions.
This field leads to a strong acceleration for the electrons due to the other sign of their charge and the much lower mass of the electrons
than of the ions. This situation enforces a two-stream instability, which is considered to be compensated by wave-particle interactions
with electrostatic plasma waves.
Methods. The kinetic approach leads to an equation in Fokker-Planck form, which can be solved by using Itō’s calculus for stochastic
differential equations.
Results. These two processes (electric field and wave-particle interaction) yield a decelerated subsonic solar wind on the downstream
side of the termination shock, showing some new features in the ion distribution function, such as a double-hump structure and a
comparatively large number of reflected ions. Within these considerations, we estimate of the spatial size of the shock region.
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1. Introduction

In the inner heliosphere the solar wind represents a supersonic
quasineutral plasma flow with typical bulk velocities in the range
of about 400 km s−1 for the slow solar wind type or 800 km s−1

for the fast solar wind. The solar wind density and the kinetic
ram pressure of the plasma flow in this region systematically
decrease with increasing solar distance. In order to be able to
adapt to the local interstellar medium (LISM) with its finite pres-
sure PLISM, the solar wind plasma thus has to undergo a shock,
the so-called solar wind termination shock, where it transforms
into a subsonic downstream plasma flow with downstream Mach
numbers Ma2 ≤ 1 (Lee 1997; Zank 1999; Fahr 2004). This ter-
mination shock has to arrange the dissipative deceleration of a
collisionless plasma flow. The specific structure of astrophysi-
cal magnetohydrodynamic (i.e. MHD) shocks is strongly char-
acterised by the orientation of the local magnetic field B with
respect to the shock surface normal n. In this respect “parallel”
means that the magnetic field upstream of the shock is parallel
to the normal n of the shock surface, i.e. [B × n] = 0, and “per-
pendicular” means that the scalar product (B ·n) upstream of the
shock vanishes. In the “parallel case” there evidently is no mag-
netic Lorentz force component acting upon the plasma stream
that can decelerate the plasma flow. This means that the bulk
Lorentz force (∝Un × B) cannot contribute to the decrease in the
bulk velocity Un of the plasma in n-direction. Thus, the magnetic
field at the first order does not play a dynamic role in the treat-
ment of parallel MHD shock waves. Only by electromagnetic or
hydromagnetic waves could it play an indirect role. Thus, at first
glance, only one process remains that could enforce the necces-
sary plasma deceleration, namely the action of the selfconsistent
shock-electric field. Ions are slowed down by running against

this electric potential wall associated with this field E, thereby
reducing the bulk momentum of the plasma. If its selfconsistent
form slows down the ions, it will also, however, simultaneously
lead to an acceleration of the plasma electrons during the shock
transit. Of course the electron mass me is much lower than the
mass mp of a proton, which is the most abundant ion in the solar
wind plasma (i.e. mp/me ≈ 1836).

The first result of this electric field influence is a slowed-
down ion flow and, in contrast, a strongly over-shooting fast
electron flow. This situation creates electric space charges and
represents a typical electrostatic two-stream instability. Thus, it
cannot represent the final dynamical state of the downstream
plasma flow for evident reasons: the plasma would constitute a
non-neutral state due to different local densities of electrons and
ions. Several different plasma micro-processes are consequently
put in operation by this primarily unstable situation which tend
to asymptotically bring both particle species to one identical sub-
sonic bulk velocity and to an asymptotic quasineutral plasma
condition. In this respect we investigate in detail in the present
paper the collisionless wave-particle interaction with consis-
tently excited electrostatic plasma waves (also called Langmuir
waves) that are dynamically coupling ions and electrons.

This type of quasiparallel MHD shock envisaged in this pa-
per in fact often appears in astrophysical reality, for example
at different regions of the solar wind termination shock where
the upstream frozen-in magnetic fields either systematically or
temporarily attain small tilt angles with respect to the shock nor-
mal (e.g. see Chalov & Fahr 1996; Zank et al. 2004; Schwadron
& McComas 2006; Kóta & Jokipii 2006; Li & Zank 2006). In
some of the termination shock areas, the periodically chang-
ing magnetic field orientation at current sheet layers temporarily
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leads to parallel shock conditions. In addition, the parallel shock
more or less is a permanent feature at high solar latitudes.
Furthermore it is worth mentioning that nearly parallel shock
conditions also permanently occur at the flanks of the earth’s
bow shock (Treumann & Scholer 2002). In all these cases typi-
cal nonstationarities and strong wave generation have been theo-
retically predicted as characteristic features of such quasiparallel
shocks (Krasnoselskikh et al. 2002) and also observed by in-situ
CLUSTER observations (Lobzin et al. 2007) or VOYAGER ob-
servations (Burlaga et al. 2006).

It has been clear from the very beginning that the physi-
cal details of the above-mentioned dissipative plasma-wave mi-
croprocesses are not embedded in the internal physics of the
Rankine-Hugoniot conservation laws of magnetohydrodynamic
shock theory, since microprocesses are not specified therein.
Thus, a kinetic treatment of the shock transition definitely
becomes necessary for the sake of a better physical understand-
ing of the internal shock properties. For the situation of a per-
pendicular shock, analytic solutions of the ion distribution func-
tion have more recently been worked out from an adequately
formulated Boltzmann-Vlasov equation (Fahr & Siewert 2006);
however, up to now no analytic solutions could be provided for
the parallel case due to the mathematically much less accessi-
ble and treatable form of the Boltzmann-Vlasov equation gov-
erning this case (see Siewert & Fahr 2008). In this paper we
solve the adequate Boltzmann-Vlasov equation for the parallel
case including stochastic, entropy-generating, wave-particle in-
teraction processes. The numerical solution of this equation is
obtained using the Itō-stochastic calculus transforming the gov-
erning second-order partial differential equation into a set of
stochastic linear differential equations. This procedure has al-
ready been successfully applied for different space plasma prob-
lems in the past (e.g., Chalov et al. 1995; Chalov & Fahr 1998;
Dworsky & Fahr 2000). With this solution method, we then ob-
tain the ion distribution function on the downstream side of the
parallel shock in dependence on specific values for the intro-
duced shock parameters, such as the shock thickness, the up-
stream solar wind density, and solar wind bulk velocity. Some
remarks on the observability of the phenomena predicted by our
theoretical approach are given in the conclusions of this paper.

2. Theoretical approach

We assume a one-dimensional shock configuration where both
the plasma bulk flow vector U and the upstream local mag-
netic field B are parallel to the shock normal n. The one-
dimensional steady-state Boltzmann-Vlasov equation for a col-
lisionless medium moving along the normal space coordinate s
can then be given in the form (see Fahr & Siewert 2006)

∂ f
∂s
= − 1
w‖

F‖
mp

∂ f
∂w‖
+

1
w‖

(
δ f
δt

)
wp

· (1)

Here s is the line element counted along the shock normal,w‖ the
individual ion velocity in the same direction, i.e. parallel to B,
and F‖ represents the external force (in this case generated by
the electric field E). The distribution function f = f (s, w‖, t)
depends on the phase-space coordinates for space s, velocity w‖,
and time t. The last term on the right-hand side of Eq. (1) takes
the place of the Boltzmann collision term describing stochastic
processes. It does not correspond to a local time derivative, but
represents temporal changes of the distribution function due to
the wave particle interactions (indicated by the index wp) during
shock transit.

2.1. Electric field

As described above, the source of deceleration of the solar wind
ions is a space-charge-induced electric field E. This field must
be consistent with the requirements formulated by the Rankine-
Hugoniot MHD shock relations.

2.1.1. Consistency with MHD

Thus it is at first necessary to find an expression that can describe
an electric field consistent with the MHD shock conditions. As
described before, the magnetic field can be omitted in these con-
siderations. Therefore, one is left with the fairly simple Euler
equation in connection with a force term that is the result of the
electric field:

ρU
dU
ds
= −dP

ds
+

e
mp
ρE. (2)

In this formula U denotes the ion bulk velocity, P the pressure,
and ρ the mass density of the ions. Also, E represents the field
component in the n-direction of the electric field E. Rearranging
the terms of this equation yields the mandatory condition for the
electric field

E = mp

e

[
U

dU
ds
+

1
ρ

dP
ds

]
· (3)

Using the pseudo-polytropic relation C = P/ργSA = const. with
the super-adiabatic heat capacity ratio γSA > 5/3 to respect the
super-adiabaticity and non-isentropicity of the shocked plasma
yields

E = mp

e

[
U

dU
ds
+CγSAρ

γSA−2 dρ
ds

]
· (4)

The super-adiabatic behaviour follows from the fact that dur-
ing the shock transit kinetic energy from the flow is permanently
converted into thermal energy, whereas the plasma cannot be de-
scribed as if it was enclosed in a box. Incorporating the mass flux
conservation Fm = ρU = ρ1U1 = const., where index 1 denotes
the particular upstream parameter, leads to

E = mp

e
U

dU
ds

⎡⎢⎢⎢⎢⎣1 − γSAP1

ρ1U2
1

(U1

U

)γSA+1
⎤⎥⎥⎥⎥⎦ · (5)

Here one can represent the bulk velocity in units of the upstream
sound velocity cs,1 =

√
γSAP1/ρ1 and introduce the Mach num-

ber Ma to find the expression

E = mp

e
U

dU
ds

⎡⎢⎢⎢⎢⎣1 − 1

Ma2
1

(U1

U

)γSA+1
⎤⎥⎥⎥⎥⎦ · (6)

For a highly supersonic upstream flow (Ma2
1 � 1), one thus ob-

tains as a first-guess solution

E ≈ mp

e
U

dU
ds
=

mp

2e
dU2

ds
(7)

as an adequate and consistent condition for a first guess for the
electric field (Siewert & Fahr 2007). As we show later, this ini-
tial field expression is changed, where the iteratively obtained
solutions for ion bulk velocities and ion pressures can be taken
into account as velocity moments of the ion distribution function
described in Eq. (1).



D. Verscharen and H.-J. Fahr: Kinetic description of parallel termination shock 725

2.1.2. Source of instability: over-shooting electrons

The field given in the form of Eq. (7) takes care of arranging
the primarily MHD-desired behaviour to decelerate the ions. The
conservation of energy then automatically leads to an expression
for the electron bulk velocity ue. Thus, starting from

1
2

me(u2
e − u2

e,1) =
1
2

mp(U2
1 − U2), (8)

with the assumption of identical upstream bulk velocities for
ions and electrons (U1 = ue,1), one obtains the bulk velocity of
the over-shooting electrons on the downstream side of the shock
given by

uel
e =

√
mp

me
U

√
U2

1

U2

(
1 +

me

mp

)
− 1. (9)

The upper index el indicates that there is no other interaction
than the electric field considered for this value. To orient the
reader, a typical compression ratio of a strong shock with a value
of κ = U1/U2,0 = 4 and an upstream bulk velocity of U1 =
400 km s−1 leads to a downstream electron bulk velocity of about
uel

e ≈ 66 400 km s−1, whereas the ions just have a downstream
bulk velocity of only U2,0 = 100 km s−1.

2.2. Wave-particle interaction

The quasilinear theory of Landau damping is used to obtain
the temporal change of the ion distribution function due to the
interaction between particles and electrostatic plasma waves.
Considering in the frame of the ions the electrons that are in res-
onance with the excited plasma waves k · u ≈ ωp (k = wavenum-
ber, ωp = electron plasma frequency, u = ue−w = ion velocity in
electron bulk frame), one obtains as an expression for the change
of the ion distribution function the general Fokker-Planck term
in the form(
δ f
δt

)
wp

=
∂

∂w‖
Dwp
∂ f
∂w‖
, (10)

where Dwp denotes the quasilinear diffusion coefficient (for
quasilinear theory see for example Lifshitz & Pitaevskii 1981;
Kadomtsev 1965; Davidson et al. 1970), which is given by

Dwp =

(
e

mp

)2 ∫
γkE2

k

(ωp − k · u)2 + γ2
k

d3k. (11)

In this expression γk is the well known Landau damping rate,
which in the above expression indicates a nonlinear increment
of the ion velocity in the electron bulk frame. Recalling the one-
dimensionality and changing to the shock frame then leads to

Dwp =

(
e

mp

)2 ∫
γkE2

k

(ωp − k(ue − w‖))2 + γ2
k

dk. (12)

Most of the interacting electrons have much higher particular
velocities than the ions, meaning that ue � w‖. Therefore, the
diffusion coefficient can be simplified to

Dwp(ue) ≈
(

e
mp

)2 ∫
γkE2

k

(ωp − kue)2 + γ2
k

dk, (13)

which in this form is independent of w‖ and permits a simplifi-
cation of Eq. (10) by(
δ f
δt

)
wp

≈ Dwp(ue)
∂2 f

∂w2
‖
· (14)

The diffusion coefficient can be simplified, if only the resonant
particles (kue = ωp) are taken into account, as mentioned before,
as an upper limit for the resonance. Then only the maximum
Landau damping rate needs to be considered, which is given by

γmax =

√
3

2
ωp

3

√
me

4mp
· (15)

In this case, then the diffusion coefficient is finally obtained in
the form

Dwp(ue) ≈
(

e
mp

)2 1
γmax

∫
E2

kmax
δ(k − kmax)dk (16)

(Davidson et al. 1970). The integration over the conjugate square
of the turbulent electric field is carried out under the assump-
tion of a quasi-equilibrium interpreted between the differential
electron kinetic energy and the energy density contained in the
self-excited turbulent electric field. Under equipartition condi-
tions, the latter energy density should be in balance with the ki-
netic energy density of the overshooting electrons in the ion rest
frame (see also Vedenov 1963), so the following estimation may
be reasonable:

2
∫ E2

kmax

8π
δ(k − kmax)dk ≈ 1

2
mene(ue − U)2. (17)

Factor 2 on the left-hand side indicates that both of the linearly
independent wave propagation directions are taken into account.
Hence, the final form of the diffusion coefficient is then given by

Dwp ≈ D‖ =
3
√

4mp

me√
3

(
me

mp

)2

ωp(ue − U)2. (18)

In the following Dwp is denoted as D‖ to clarify its difference
from the more general form of the diffusion coefficient. In the
formula above it can be easily seen that the turbulent interaction
works more efficiently at high velocity differences between elec-
trons and ions and evidently vanishes for equal bulk velocities.

2.3. Itō-Stochastic differential equation

Now with the terms derived above the adequate Boltzmann-
Vlasov equation attains the form

∂ f
∂s
= −1

2
dU2

ds
1
w‖
∂ f
∂w‖
+

1
w‖

D‖
∂2 f

∂w2
‖
· (19)

To bring this equation into a typical Fokker-Planck form, the
differential particle current N = w‖ f can be introduced. With
this substitution, Eq. (19) reads as

∂N
∂s
= − ∂
∂w‖

(
1
2

dU2

ds
1
w‖

N

)
+

1
2
∂2

∂w2
‖

(
2D‖
w‖

N

)
. (20)

This Fokker-Planck equation contains a velocity drift term

A(w‖, s) =
1
2

dU2

ds
1
w‖

(21)

and a velocity diffusion term

B(w‖, s) =
2D‖
w‖
· (22)
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The Itō-calculus for stochastic differential equations can be ap-
plied with the help of these expressions. The basic underlying
method is appropriately described in Gardiner (1994). This cal-
culus describes the motion of one single particle under the influ-
ence of drift and diffusion. Therefore, it must include both the
deterministic behaviour due to the drift term and the stochas-
tic behaviour due to the diffusion term. Leading to a simple in-
tegrable equation for the motion of one particle (the so-called
Langevin equation), this approach constitutes an easier method
from the numerical point of view to solve a Fokker-Planck equa-
tion than other possible methods. Additionally, the physical in-
terpretation of both acting processes becomes clearer because
one can follow one particle on every step during its shock tran-
sit. In contrast to that method, the actual differential equation
could also be solved numerically by using a finite-difference
method based on splitting the physical processes, where the ex-
plicit counterflow scheme is applied for the convective part and
for the diffusive part of the equation the implicit scheme with
Newton’s method used to solve the nonlinear system of equa-
tions. The problem here is, however, to reach convergence of the
numerical solutions (see Chalov et al. 2004). As a parabolic par-
tial differential equation the Fokker-Planck Eq. (20) will prob-
ably need a more complicated classical PDE treatment (as an
initial/boundary-value problem) to avoid singularities in the so-
lution (see for example Evans 1998).

The associated Langevin equation for the general case is
given by

dw‖
ds
= A(w‖, s) +

√B(w‖, s)ξ(s). (23)

In this differential equation the quantity ξ(s) is a rapidly varying
stochastic term (i.e. 〈ξ(s)ξ(s′)〉 = δ(s− s′)). In the special case of
our problem here the integration of the corresponding Langevin
equation is achieved by means of the Itō stochastic equation

dw‖ =
1
2

dU2

ds
1
w‖

ds +

√
2D‖∣∣∣w‖∣∣∣ dWs (24)

with ds = w‖dt.
From this, dWs is the increment of the Wiener process

given by

W(s) =

s∫
0

ξ(σ)dσ. (25)

It can be obtained from its probability distribution

p(dWs) =
1√

2π(ds)
e−

1
2

(dWs)2

(ds) (26)

for a stochastic step of width dWs within the distance ds.
Looking at Eq. (24), the splitting of the two acting processes

becomes apparent. The effect of the decelerating electric field
is described by the first term (the drift term) and the stochastic
effect of the wave-particle interaction appears within the second
term (i.e. the diffusion term).

To continue at this point, the specification of a bulk velocity
profile U = U(s) is necessary. In our case here we represent the
velocity step over the shock by a “tanh”-profile (compare with
Lee et al. 1986) in the form

U(s) =
U1 + U2,i

2
− U1 − U2,i

2
· tanh

( s
λ

)
, (27)

which brings the ion bulk velocity U(s) from its higher upstream
value U1 down to the downstream value U2,i within a character-
istic length scale λ. The ion pressure profile behaves similarly
and is hence described by a profile, which ignores the upstream
pressure:

P‖ =
P2,i

2
+

P2,i

2
tanh

( s
λ

)
· (28)

For the first guess, U2,i is considered to be given by U2,0 = U1/κ.
During the iteration its value changes, which leads to a change
in the velocity profile and, hence, to a change in the electric field
according to Eq. (7). The electron velocity profile contains two
ingredients: one is the initial velocity over-shoot from Eq. (9),
and the other is due to turbulent kinetic energy loss:

ue(s) = uel
e (s) + uturb

e (s) (29)

where the last quantity is given by

uturb
e (s) =

U2,i − uel
e,2

2
+

U2,i − uel
e,2

2
· tanh

(
s − b
μ

)
· (30)

As a result, the electron bulk velocity first shoots up to uel
e,2, but

then is systematically driven down to U2,i by the action of the
dynamic coupling between electrons and ions. The characteristic
length scale of the electrostatic turbulent wave-particle interac-
tion depends on the parameters b and μ.

Each integration of Eq. (24) corresponds to the phasespace
propagation of one selected ion over the shock structure influ-
enced by drift and diffusion (MacKinnon & Craig 1991). Thus,
such integrations must be carried out with a statistically relevant
sample of ions (in this case for 30 000 ions) to reach statisti-
cal significance. Counting the individual ions on the downstream
side in their different velocity space intervals thus finally yields
the ion distribution function f2(w‖). As the most important veloc-
ity moments of f2(w‖), the resulting downstream bulk velocity

U ′2 =
1
n2

+∞∫
−∞
w‖ f2(w‖)dw‖ (31)

and the temperature of the ions

Ti,2 =
mp

3kBn2

+∞∫
−∞

(
w‖ − U ′2

)2 f2(w‖)dw‖ (32)

are calculated. This quantity, together with n2, also delivers the
ion pressure

P‖ = n2kBTi,2 (33)

and, thus, allows us to iteratively update the electric field taken
from Eq. (3).

From arguments of energy conservation the electron temper-
ature Te,2 can also then indirectly be achieved. For the further
iteration of Eq. (24), the downstream bulk velocity in Eq. (27)
now is set equal to the newly found value U′2. Hence, one only
obtains the asymptotic, “real” value of the resulting downstream
bulk velocity U2,i after several iterations after it results from the
action of the processes.
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3. Results

3.1. Thickness of the shock

To estimate the size λ of the space charge region where the elec-
tric field E dominates, an approximative solution of Poisson’s
equation in the following form can be used,

dE
ds
∼ E
λ
= 4πe(ni − ne), (34)

since such stationary electric fields at the shock transition are
always the result of a charge density distribution in a plasma.

To form a rather simple estimate, the densities are derived
from the particle flux conservation F = niU = neue = const.
Then, the above estimation leads to

λ ∼
√√√√ mp

8πe2n1

Δ(U2)(
U1

U2,0
− U1

uel
e,2

) ∼ 5 × 105 cm. (35)

As described by Davidson et al. (1970) the characteristic time
for wave-particle interaction is given by a few maximum growth
periods

τ ≈ 1
γmax

=
2√
3

1
ωp

3

√
4mp

me
· (36)

The plasma frequency ωp =
√

4πnee2/me on the downstream
side of the termination shock (at about 90 AU) can be calculated
for a typical value for the downstream electron number density
of ne = 1.2 × 10−3 cm−3. Therefore, one can estimate the region
of turbulent wave-particle interaction to have a most probable
size of a few multiples of

σ ≈ U2,0τ � 1 × 106 cm. (37)

This evaluation is needed to find appropriate estimates for the
parameters b and μ that characterise the turbulence region.

3.2. Properties of the downstream distribution function

Using standard parameters (good compilations are given by
Scherer et al. 2000; or can be found in the review of Zank 1999;
and measurments from space probes can be found at Gazis et al.
1994) for the quiet solar periods; i.e., like U1 = 4 × 107 cm/s,
ni,1 = ne,1 = 5×10−4 cm−3, Ti,1 = 1.0×104 K, κ = U1/U2,0 = 4,
the resulting ion distribution function f2(w‖) can be calculated
and plotted. The tilde sign on top of velocities indicates that
these values are normalised by U1 for a better numerical han-
dling; i.e., velocities are given in units of the upstream bulk ve-
locity (e.g., w̃‖ = w‖/U1) and length scales in units of λ, which
is set to the estimated value of 5 × 105 cm. The shock extent is
discretised into 10 000 steps over the range of −20 ≤ s̃ ≤ +20.
The initial ion velocities are taken from an upstream distribution
function f1(w‖) taken as a Maxwell-Boltzmann distribution with
T = Ti,1. The parameter b is set to 2 × 106 cm, whereas μ is al-
ways chosen so that the ratio b:μ amounts to 4:1. This assures
that the electron bulk velocity profile decreases continuously
from its overshoot value to its asymptotic value Ũ2. Calculations
with different values for this ratio do not show any severe depen-
dence on μ. The distribution function is plotted in Fig. 1.

The real bulk velocity on the downstream side as calculated
by Eq. (31) has a value of U2,i � 1.6 × 107 cm/s, which leads

Fig. 1. Normalised ion distribution function on the downstream side of
the termination shock. The underlying parameters are described in the
text. The sample consists of 30 000 particles. Two humps have been de-
veloped in the distribution with one reflected and one continuing beam.
The dotted curves are the fit results described in Sect. 3.4.

to a true compression ratio of r = U1/Ũ2 � 2.5. The ion tem-
perature amounts to Ti,2 � 2.27 × 106 K, the electron tempera-
ture to Te,2 � 3.13 × 106 K. Thus, the downstream sound veloc-
ity takes a value of

cs,2 =

√
γkBTi,2

mp
� 1.8 × 107 cm/s (38)

and is higher than U2,i. For this reason the shock in fact decel-
erates the ions from an initially supersonic to a subsonic bulk
velocity.

In view of Fig. 1 one recognises that partial ion reflection
obviously occurs at the termination shock. The hump on the
left-hand side of the downstream ion distribution function f2(w‖)
is developed due to ion scattering at electrostatic turbulences
and represents ions that have attained negative particular veloc-
ity with respect to the shock rest frame. The amount of these
ions is determined by the parameters λ and b. For smaller shock
size parameters, the fraction of these ions decreases and vice
versa. Within the usual ranges the other parameters have only
a very weak influence on the plasma stream properties. Even a
change in the classical compression ratio κ does not change the
downstream bulk velocity U′2, since the turbulent interaction is
so dominant that it superposes the classical velocity profile. This
holds for κ > 2, whereas it is usually assumed to be approxi-
mately 4.

The energy densities contained in the electric field and in
the wave field can be derived from the bulk velocity behaviour.
The electric field energy eΦ ≈ eEλ leads to the change in the
ion velocity and, therefore, the mean field from a global view is
given by

E =
1
2 mp

(
U2

1 − U2
2,i

)
eλ

· (39)

Using λ from Eq. (35) this yields

eE =
E2

8π
≈ 1

4
mpn1

(
U1

U2,i
− U1

uel
e

) (
U2

1 − U2
2,i

)
(40)

as an expression for the electric energy density. The condition of
equipartition in Eq. (17) reveals a wave field energy density of

eW ≈ 1
2

mene,2

(
uel

e,2 − U2,i

)2
. (41)

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:200809950&pdf_id=1
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Fig. 2. Dependence of the moments on parameter λ. The ordinate for
units of velocities is on the left, for the temperatures on the right.
Velocities are scaled in units of U1, and b has a value of 2 × 106 cm.

For the given compression of κ = 4 at the beginning, this leads
to a ratio of eE/eW ≈ 80. For the resulting true compression of
r = 2.5, this ratio changes for the benefit of the electric field to
eE/eW ≈ 240 as expected because the bulk velocity change and
the over-shooting is smaller than in the first view so that much
less turbulent waves are excited.

3.3. The shock thickness dependence

At this point the interest in the two most important parameters λ
and b arises. A set of calculations of the downstream distribution
function f2(w‖) is carried out by us for different parameters and
the moments U ′2 and T2 (temperature both for ions and electrons)
are calculated. The dependence on λ is shown in Fig. 2. The real
value of b does not change during the iterations, thus b̃ = b/λ
must change because of the rescaling by units of λ.

In addition to the above-mentioned moments, the sound ve-
locity c̃s,2 on the downstream side of the shock is plotted into the
diagram in the same scaled units as Ũ2. Thus, it is possible to
see which cases have no physical meaning, i.e. where the down-
stream bulk velocity is higher than the speed of sound. In these
cases the solar wind would not be shocked down to a subsonic
flow. This situation is given for λ >∼ 6 × 105 cm and, therefore,
an upper limit is obtained from the numerical simulation. This
result is in very good agreement with the above approximative
value of λ = 5×105 cm. The parameter λ obviously has an effect
on both the deceleration and the change in the temperature.

The other important parameter for the calculation is the size
of the interaction region, which is determined by b. In Fig. 3
we show the behaviour of the moments of the ion distribution
function in dependence on b.

Essentially, this parameter only has an influence on the tem-
perature that is identically represented by the width of the distri-
bution function. The downstream bulk velocity does not show
a pronounced relationship with the size of the region where
wave-particle interaction occurs. Because of the energy con-
servation, increasing ion temperature at constant bulk veloc-
ity means decreasing electron temperature, and the other way
around. However, there is one point where isothermal conditions
appear. At b = b̃λ = 5 × 5 × 105 cm = 2.5 × 106 cm the ion and
the electron temperatures turn out to be equal. A further transfer
of thermal energy from electrons to ions during the ongoing of
the propagation further downstream should be forbidden by the
second law of thermodynamics (anti-entropic behaviour!). On
the other side, the same argument as above holds for b̃ <∼ 3,

Fig. 3. Dependence of the moments on parameter b. The ordinate for
units of velocities is on the left, for the temperatures on the right.
Velocities are scaled in units of U1, b̃ is scaled as b̃ = b/λ. λ is cho-
sen to be 5 × 105 cm.

namely that the downstream velocity is higher there than the
sound velocity. Hence, the possible range for b̃ can be restricted
to 3 <∼ b̃ <∼ 5, which means that, in rescaled units, b takes a value
between 1.5 × 106 cm and 2.5 × 106 cm. This strong restriction
shows that the estimated size of 2 × 106 cm is a good choice for
the size of the interaction region.

3.4. Possible observations of the double-hump feature
of the ion distribution

In the more recent past some observational indications for the
occurrence of MHD plasma waves at the solar wind termina-
tion shock were obtained from VOYAGER measurements (see
Burlaga et al. 2006). In addition, the plasma wave subsystems
(PWS) onboard the VOYAGER-1 probe have received radio
waves in the kHz region, which are interpreted as the result
of electrostatic plasma oscillations at the termination shock as
converted into electromagnetic turbulence by several authors
(Gurnett & Kurth 1996). Although these emissions seemed to be
singular events connected with preceding solar outbursts prop-
agating in the solar wind, this nevertheless is a direct indica-
tion of the occurrence of plasma waves. The observed radiation
suggests a plasma frequency of about 900 Hz, whereas in our
case the plasma frequency of the downstream plasma is at about
νp ≈ 320 Hz. The observed higher frequency, however, can be
the result of the different solar wind properties after a particle
outburst.

A better chance to confirm the results of the kinetic shock
model presented here is perhaps given through the spectral ob-
servation of energetic neutral atoms (ENAs). The interstellar
boundary explorer (IBEX) satellite will soon (scheduled launch
in August 2008!) present the opportunity to detect spectral inten-
sities of ENA fluxes of shock-generated ENAs from a vantage
point near the earth (McComas et al. 2005). From these mea-
surements the ion distribution function at the termination shock
can be reconstructed (Gruntman et al. 2001). For this reason it
appears to be adviced to offer an analytical fit result for the nu-
merically obtained ion distribution function of this paper here.
Therefore, the superposition of two Gaussians of the form

f̄ (w̃‖) = a · exp
(
−b

(
w̃‖ − c

)2
)

(42)

is selected as a best fit to the numerically obtained normalised
distribution function f̄2(w̃‖). The fit function is plotted addition-
ally into Fig. 1, the fit parameters are listed in Table 1.
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Table 1. Result of the fit according to Eq. (42).

Fit parameter Left beam Right beam
a 0.343 ± 0.008 1.03 ± 0.01
b 7.5 ± 0.5 5.4 ± 0.1
c −0.450 ± 0.007 0.644 ± 0.004

The small errors indicate the quality of the fit result.
Integrating both Gaussians and summing up yields 1.01, which
emphasises this result (i.e., the distribution function is nor-
malised to 1).

4. Conclusions

The ion distribution function f2(w‖) shows two beams, both of
which are well-fitted by a Gaussian profile. One of these beams
represents ions that are reflected at the shock. The number of
these reflected ions are determined by the shock size parame-
ters λ and b. From classical MHD theory, this detailed double-
hump behaviour cannot be obtained. The MHD shock treatment
only relates several global quantities to one another and does
not present the kinetic details. In our model global assump-
tions are partially taken from MHD. On the other hand, the mo-
ments of the numerically calculated distribution function deter-
mine the MHD shock characterisation. Thus, our results are in
good agreement with the magnetohydrodynamic theory; how-
ever, they show several additional details.

The predominant quantities for downstream bulk velocity
and temperature are the parameters that characterise the shock
extent. The others do not change the plasma properties on the
downstream side appreciably, if they are chosen within the typ-
ical range. Connecting the differently gained results leads to the
solar wind termination shock having a small shock thickness
of about 2 × 106 cm in comparison with other considerations.
For example, Siewert & Fahr (2007) find a shock thickness of
about λ‖ >∼ 2 × 1010 cm for similar conditions for the parallel
case (using a typical magnetic field of B = 5 × 10−7 G). They
consider Whistler waves as the process that compensates for the
two-stream instability. It is, however, obvious from basic consid-
erations in this paper that electrostatic plasma waves couple the
electron and ion bulk velocities much more efficiently.

For the typically chosen parameters, the real compression ra-
tio turns out to be r = 2.5. A comparison with measured data is
hard to do because of the very poor data basis. Different data
from the shock passage of VOYAGER-1 leads to a derivation
of the compression ratio of r = 2.6+0.4

−0.2 (Stone et al. 2005),
which interestingly enough lies in perfect accordance with our
value here. However, this result must be handled with caution,
because VOYAGER-1 is supposed to have observed in a termi-
nation shock region with a quasi-perpendicular shock situation.
On the other hand, this space probe is the only instrument to
now that has been able to achieve in-situ measurements of this
parameter.

Our calculations in addition show a higher temperature for
the electrons than for the ions, except for the situation where
isothermal conditions can be reached at T2 � 2.8 × 106 K as
described before. For most of the MHD simulations, this is not
the typical result, and even multifluid simulations in contrast in-
dicate a lower downstream temperature for the electrons (e.g.,
Zank 1999).

The true size of the shock layer is the crucial factor in our
model; hence, one should study the possibility of a simultaneous
kinetic treatment of the involved electrons. This could yield the

ability to find a self-consistent plasma description, wherein the
shock extent does not need to be a given parameter but a quan-
tity that results from the calculation itself. Due to the fact that –
after the again singular VOYAGER-2 passage – no more in-situ
measurements can be expected in the very near future, remote
sensing by satellites like IBEX represents the best capability for
an observational study of our results with a high statistic sig-
nificance. Within the energy bands of IBEX, the conspicuous
double-hump structure should be observable.

Our model shows that the connection of classical MHD with
kinetic methods is a good way to obtain detailed results for the
behaviour of shocked space plasmas. The very complex closed
solution of the full Boltzmann equation becomes unnecessary
using this approach.
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