1. Introduction

The vast majority of the visible matter in the universe is in the plasma state. The solar wind is an example of such an astrophysical plasma. Due to its accessibility to spacecraft, it is the perfect environment for making comparisons between theoretical plasma-physics predictions and in situ observations in the astrophysical context with access to wide scale separations (see, for example, Marsch 2006). Plasmas can deviate...
from thermodynamic equilibrium if the relaxation due to particle collisions occurs on
time scales that are larger than the characteristic time scales of the collective plasma
behaviour. Such a collisionless plasma is characterised by non-Maxwellian features in
its velocity distribution functions. In the fast solar wind, this condition is frequently
fulfilled, and, consequently, the observed distribution functions often deviate from the
entropically favoured Maxwellian shape (Vasyliunas 1968; Gosling et al. 1981; Lui &
Krimigis 1981; Marsch et al. 1982a,b; Armstrong et al. 1983; Lui & Krimigis 1983;
Christon et al. 1988; Williams, Mitchell & Christon 1988). In particular, beams and
temperature anisotropies are some of the observed features in the distributions of ions
and electrons in the solar wind (Pilipp et al. 1987a,b; Hellinger et al. 2006; Marsch
2006; Bale et al. 2009). If these deviations from equilibrium are suitably extreme, the
plasma becomes unstable and generates waves or non-propagating structures that react
back upon the plasma to reduce the deviations from equilibrium (Eviatar & Schulz
1970; Schwartz 1980; Gary 1993; Hellinger & Trávníček 2011, 2013). Also laboratory
and fusion plasmas often show non-Maxwellian features in their velocity distribution
functions. These include, for example, fast particles resulting from neutral-beam
injections, alpha-particle beams from fusion reactions or non-Maxwellian distributions
resulting from active ion/electron-cyclotron heating (Stix 1975; Gaffey 1976a,b; Tang

The behaviour of plasma waves and instabilities is typically studied with the
help of numerical codes that solve the hot-plasma dispersion relation. Traditionally,
these codes (like WHAMP, PLUME or NHDS) use a shifted bi-Maxwellian
background distribution function as the zeroth-order description for the plasma
state (Roennmark 1982; Quataert 1998; Klein et al. 2012; Verscharen & Chandran
2018). For nearly collisionless plasmas, however, the bi-Maxwellian distribution
function is a mathematical convenience rather than a reliable representation of
the true plasma distribution function, and many space-plasma observations show
that the bi-Maxwellian representation is not accurate (Hundhausen 1970; Leubner
1978; Marsch et al. 1982b; Pilipp et al. 1987a; Marsch & Tu 2001; Štverák et al.
2009). Some previous approaches in non-Maxwellian solvers treated certain limits or
geometries (Dum, Marsch & Pilipp 1980; Summers & Thorne 1991; Xue, Thorne
& Summers 1993; Summers, Xue & Thorne 1994; Xue, Thorne & Summers 1996;
Hellberg, Mace & Cattaert 2005; Cattaert, Hellberg & Mace 2007; Lazar & Poedts
2009; Mace & Sydora 2010; Lazar, Poedts & Schlücker 2011; Galvão et al. 2012;
Xie 2013; Lazar & Poedts 2014; Gaelzer & Ziebell 2016; Gaelzer, Ziebell & Meneses
2016) or faced challenges in the weakly damped limit (Hellinger & Trávníček 2011).

We present our numerical code ALPS (Arbitrary Linear Plasma Solver), which
solves the full hot-plasma dispersion relation in a plasma consisting of an arbitrary
number of particle species with arbitrary background distribution functions \(f_{0}\) and
with arbitrary directions of wave propagation with respect to the uniform background
magnetic field. ALPS is also able to solve the dispersion relation for relativistic
plasmas. Matsuda & Smith (1992) developed a code similar to ALPS that calculates
the dispersion relation in an arbitrary plasma with relativistic effects. Their code uses
a cubic-spline fit to both fill data gaps and approximate the analytic continuation,
while ALPS uses a novel method called hybrid analytic continuation. The spline
method forfeits its accuracy for strongly damped solutions since the calculation of
the dispersion relation requires the evaluation of the spline at a complex value that
is distant from the real grid points by which the spline is supported. Our method
does not suffer from this problem. Astfalk & Jenko (2017) also use a cubic-spline
interpolation for the analytic continuation and as the basis for the integration in their
code LEOPARD. This procedure allows for algebraic simplifications that enhance the speed of the integration significantly. LEOPARD, however, does not capture relativistic effects.

In § 2, we review the underlying theory of the hot-plasma dispersion relation. § 3 presents ALPS’s numerical approach. In § 4, we compare ALPS results to known limits of the hot-plasma dispersion relation such as Maxwellian, bi-Maxwellian, \(\kappa \)-distributed, and relativistic pair plasmas. In § 5, we discuss our results and the applicability of ALPS to measured plasma distributions. The appendices describe how ALPS solutions depend on the resolution of the background distributions, discuss the Levenberg–Marquardt-fit routine used in our hybrid analytic continuation method and describe our strategy for numerically refining coarse-grained distribution functions obtained from spacecraft measurements.

2. The linear dispersion relation of a hot plasma

In this section, we discuss the mathematical basis for the calculation of the hot-plasma dispersion relation following the presentation and notation of Stix (1992). The determination of the kinetic wave dispersion relation in a hot plasma is based on the linearised set of Maxwell’s equations and the linearised Vlasov equation (Trubnikov 1959; Drummond & Rosenbluth 1963; Shkarofsky 1966; Stix 1992; Gary 1993). A wave or instability is then associated with a first-order perturbation \(\delta f_j \) in the distribution function of species \(j \) about a prescribed time-averaged background distribution function \(f_{0j} \),

\[
f_j(r, p, t) = f_{0j}(p) + \delta f_j(r, p, t),
\]

(2.1)

where \(r \) is the spatial coordinate and \(p \) is the momentum coordinate. As with the distribution function \(f_j \) in (2.1), we take the magnetic field \(B \) to be the sum of a uniform background magnetic field \(B_0 \) and a fluctuating magnetic field \(\delta B \). We assume that \(E = \delta E \); i.e. the average electric field is zero. Linear theory expresses \(\delta f_j \) as a function of \(f_{0j} \) and the electromagnetic field components.

The distribution function \(f_j \) in a collisionless plasma evolves according to the Vlasov equation,

\[
\frac{\partial f_j}{\partial t} + v \cdot \frac{\partial f_j}{\partial r} + q_j \left(E + \frac{v}{c} \times B \right) \cdot \frac{\partial f_j}{\partial p} = 0,
\]

(2.2)

where \(q_j \) is the charge of a particle of species \(j \), \(c \) is the speed of light and \(v \) is the velocity coordinate. We assume that all fluctuating quantities behave like plane waves; i.e. \(\propto \exp(ik \cdot r - i\omega t) \), where \(k \) is the wave vector and \(\omega \) is the (complex) frequency. Linearising equation (2.2), using Faraday’s law and applying the method of characteristics, we obtain

\[
\delta f_j = -q_j e^{ik \cdot r - i\omega t} \int_0^\infty d\tau \, e^{i\omega \tau} \left\{ E_x U \cos(\phi + \Omega_j \tau) + E_y U \sin(\phi + \Omega_j \tau) + E_z \left[\frac{\partial f_{0j}}{\partial p_{\|}} - V \cos(\phi - \vartheta + \Omega_j \tau) \right] \right\},
\]

(2.3)

where \(E = (E_x, E_y, E_z) \) is the electric field, \(\phi \) is the azimuthal angle of the momentum vector \(p \), \(\vartheta \) is the azimuthal angle of the wave vector \(k \), the index \(\perp (\|) \) refers to the
direction perpendicular (parallel) with respect to the background magnetic field B_0,

$$\Omega_j \equiv \frac{q_j B_0}{m_j c \sqrt{1 + (p_{\perp}^2 + p_{\parallel}^2)/m_j^2 c^2}}$$

(2.4)

is the relativistic gyrofrequency, m_j is the rest mass of a particle of species j.

$$\alpha \equiv -\frac{k_{\perp} v_{\perp}}{\Omega_j} [\sin(\phi - \vartheta + \Omega_j \tau) - \sin(\phi - \vartheta)] + (\omega - k_{\parallel} v_{\parallel}) \tau,$$

(2.5)

$$U \equiv \frac{\partial f_{0j}}{\partial p_{\perp}} + \frac{k_{\parallel}}{\omega} \left(v_{\perp} \frac{\partial f_{0j}}{\partial p_\parallel} - v_{\parallel} \frac{\partial f_{0j}}{\partial p_{\perp}} \right)$$

(2.6)

and

$$V \equiv \frac{k_{\parallel}}{\omega} \left(v_{\perp} \frac{\partial f_{0j}}{\partial p_\parallel} - v_{\parallel} \frac{\partial f_{0j}}{\partial p_{\perp}} \right).$$

(2.7)

We normalise f_j so that $\int d^3p f_{0j} = 1$. The first velocity moments of the distribution functions of all species define the current density j through

$$j = \sum_j q_j n_{0j} \int d^3p \ v \delta f_j = -\frac{i \omega}{4\pi} \sum_j \chi_j \cdot E,$$

(2.8)

where χ_j is the contribution of species j to the plasma susceptibility and n_{0j} is the background density of species j. Without loss of generality, we choose a cylindrical coordinate system in which $k_{\perp} = \vartheta = 0$ and apply a set of Bessel-function identities in order to facilitate the integration over ϕ and τ in (2.3). This allows us to rewrite the plasma susceptibilities as (provided that $\text{Im}(\omega) > 0$)

$$\chi_j = \frac{\omega_{pj}^2}{\omega \Omega_{0j}} \int_0^\infty \frac{2\pi p_{\perp} dp_{\perp}}{\omega - k_{\parallel} v_{\parallel} - n \Omega_j} \left[\hat{\varepsilon}_1 \hat{\varepsilon}_\parallel \frac{\Omega_j}{\omega} \left(\frac{1}{p_\parallel} \frac{\partial f_{0j}}{\partial p_\parallel} - \frac{1}{p_{\perp}} \frac{\partial f_{0j}}{\partial p_{\perp}} \right) p_{\parallel}^2 + \sum_{n=-\infty}^{+\infty} \frac{\Omega_j p_{\perp} U}{\omega - k_{\parallel} v_{\parallel} - n \Omega_j} T_n \right],$$

(2.9)

where $\omega_{pj} \equiv \sqrt{4\pi n_{0j} q_j^2 / m_j}$ is the plasma frequency of species j, $\Omega_{0j} \equiv q_j B_0 / m_j c$ is the non-relativistic gyrofrequency and the tensor T_n is defined as

$$T_n \equiv \begin{pmatrix}
\frac{n^2 J_n^2}{z^2} & \frac{\text{im} J_n J'_n}{z} & \frac{n^2 l_n^2 p_{\parallel}}{zp_{\parallel}} \\
-\frac{\text{im} J_n J'_n}{z} & (J_n')^2 & -\frac{\text{im} J_n J'_n p_{\parallel}}{p_{\perp}} \\
\frac{n^2 l_n^2 p_{\parallel}}{zp_{\parallel}} & \frac{\text{im} J_n J'_n p_{\parallel}}{p_{\perp}} & \frac{l_n^2 p_{\parallel}^2}{p_{\perp}^2}
\end{pmatrix},$$

(2.10)

where $z \equiv k_{\perp} v_{\perp} / \Omega_j$ and $J_n \equiv J_n(z)$ is the nth-order Bessel function. For $\text{Im}(\omega) \leq 0$, the integral over p_{\parallel} is executed as the Landau integral after analytic continuation.
(for details, see chapter 8 of Stix 1992). Equation (2.9) describes the susceptibility for a general background distribution function f_{0j} in a relativistic plasma. The only assumptions are gyrotropy in f_{0j} and small amplitudes in the fluctuations so that linearisation is applicable, and a uniform, stationary equilibrium. The numerical challenge in the solution of the plasma dispersion relation results from the integrals over p_\perp and p_\parallel in (2.9). We note that, in numerous classical codes for calculation of the linear hot-plasma dispersion relation (Roennmark 1982; Gary 1993; Klein & Howes 2015; Verscharen & Chandran 2018), these integrals are greatly simplified by assuming that f_{0j} is a (bi)-Maxwellian.

The dielectric tensor ϵ of the plasma is related to the plasma susceptibilities from (2.9) through

$$\epsilon = 1 + \sum_j \chi_j. \quad (2.11)$$

Finally, combining Faraday’s law and Ampère’s law leads to the wave equation,

$$n_\tau \times (n_\tau \times E) + \epsilon \cdot E \equiv \mathcal{D} \cdot E = 0, \quad (2.12)$$

where $n_\tau \equiv kc/\omega$ is the refractive index. By setting $\det \mathcal{D} = 0$, we obtain the dispersion relations $\omega = \omega(k)$ for non-trivial solutions to (2.12). We write these solutions in the form $\omega = \omega_0 + i\gamma$, where $\omega_0 = \text{Re}(\omega)$ and $\gamma = \text{Im}(\omega)$.

3. Numerical approach

In order to find the solutions to the hot-plasma dispersion relation, ALPS determines the values of ω_0 and γ that solve (2.12) for specified background distributions f_{0j} at a given set of values for k, m_j, q_j, n_{0j} and v_Λ/c, where $v_\Lambda \equiv B_0/\sqrt{4\pi n_{0j} m_p}$. ALPS uses an efficient iterative Newton-secant algorithm to solve (2.12) based on an initial guess for ω_0 and γ (Press et al. 1992). The numerically challenging part for this calculation is the evaluation of χ_j in (2.9). In the following, we present ALPS’s strategy for this evaluation in the non-relativistic case. We discuss the extension to relativistic cases with poles in the integration domain in § 3.3, which is equivalent to the non-relativistic case with the exception that the coordinate system is transformed from (p_\perp, p_\parallel) to $(\Gamma, \bar{p}_\parallel)$, where Γ is the Lorentz factor and $\bar{p}_\parallel \equiv p_\parallel/m_jc$, and that (3.16) below is used instead of (2.9).

We prescribe the shape of f_{0j} in input files for each species (called ‘f_0 table’) as an ASCII table that lists $p_{1\perp}$, $p_{1\parallel}$ and the associated values of f_{0j}. From this table, we calculate $\partial f_{0j}/\partial p_{\perp}$ and $\partial f_{0j}/\partial p_{\parallel}$ on the same grid as the f_0 table using second-order finite differencing. We do not include the derivatives at the outer boundaries of the $(p_{\perp}, p_{\parallel})$ domain. The resolution of the f_0 table is given by N_\perp points in the p_{\perp}-direction and N_\parallel points in the p_{\parallel}-direction. The table spans from $p_{\perp} = 0$ to $p_{\perp} = \max_{l,j} p_{\perp}$ in the perpendicular direction and from $p_{\parallel} = -\max_{l,j} p_{\parallel}$ to $p_{\parallel} = \max_{l,j} p_{\parallel}$ in the parallel direction.

The integration in (2.9) allows us to integrate separately and independently for each n and j. This provides us with a very natural way to parallelise the calculation scheme by assigning the separate integrations to different processors. We use MPI for the parallelisation. The integrating nodes return their contributions to χ_j to the master node, which then sums up the contributions, determines the value of ϵ and updates the values of ω_0 and γ through a Newton-secant step. The updated values for ω_0 and γ are then returned to the integrating nodes, which afterwards evaluate the integration
of their updated contribution to \(\chi \). We evaluate all values of \(n \) up to a value of \(\pm n_{\text{max}} \), which is determined as the value of \(n \) for which the maximum value of \(|J_n| \) is smaller than the user-defined parameter \(J_{\text{max}} \). The necessary value of \(n_{\text{max}} \) depends on the wavenumber, the direction of propagation of the treated wave and the thermal speeds of the plasma components. In bi-Maxwellian codes under typical solar-wind conditions, the accuracy of the dispersion relation is better than \(\Delta |\omega|/|\omega| \sim 10^{-5} \) for \(J_{\text{max}} \sim 10^{-45} \) (which typically corresponds to \(n_{\text{max}} \gtrsim 10 \) at proton scales).

We use a standard two-dimensional trapezoidal integration scheme to integrate over \(p_\perp \) and \(p_\parallel \). However, this scheme breaks down near the poles of the integrand in (2.9) and requires a special treatment of the analytic continuation when \(\gamma \leq 0 \). In the remainder of this section, we discuss our strategies to resolve these numerical difficulties.

3.1. Integrating near poles

A challenge concerning the numerical integration is the treatment of the poles that occur in the term proportional to \(T_n \) in (2.9). The integrals in question are of the form

\[
I(p_\perp) \equiv \int_{-\infty}^{+\infty} dp_\parallel \Omega_j UT_n \frac{\omega}{\omega - k_j v_\parallel - n\Omega_j} \equiv \int_{-\infty}^{+\infty} dp_\parallel G(p_\perp, p_\parallel) \tag{3.1}
\]

for \(\gamma > 0 \). For sufficiently small \(\gamma \), the denominator in (3.1) can become very small along the real \(p_\parallel \) axis so that the grid sampling leads to large numerical errors in the integration. To describe how we evaluate these integrals, we first rewrite the integral in (3.1) in the more generic form

\[
\mathcal{I} \equiv \int_{-\infty}^{+\infty} dx \frac{g(x)}{x - t_\parallel - i t_\parallel}, \tag{3.2}
\]

where \(x, t_\parallel, t_\parallel \) are real, \(g(x) \) is a smooth function and the integration is performed along the real axis. We choose a symmetric interval \([t_\parallel - \Delta, t_\parallel + \Delta]\) around \(t_\parallel \) where \(\Delta \ll g(t_\parallel)/g'(t_\parallel) \), and write

\[
\mathcal{I} = \int_{t_\parallel - \Delta}^{t_\parallel + \Delta} dx \frac{g(x)}{x - t_\parallel - i t_\parallel} + \text{rest}, \tag{3.3}
\]

where ‘rest’ refers to the integration outside the interval \([t_\parallel - \Delta, t_\parallel + \Delta]\). We define a function \(f(x) \) to be odd with respect to \(t_\parallel \) if \(f(x) = -f(2t_\parallel - x) \), and even with respect to \(t_\parallel \) if \(f(x) = f(2t_\parallel - x) \). Following Longman (1958) and Davis & Rabinowitz (1984), we then separate the integrand into its odd and even parts with respect to \(t_\parallel \) as

\[
\mathcal{I} = \frac{1}{2} \int_{t_\parallel - \Delta}^{t_\parallel + \Delta} dx \left[\frac{g(x)}{x - t_\parallel - i t_\parallel} - \frac{g(2t_\parallel - x)}{-x + t_\parallel - i t_\parallel} \right] + \frac{1}{2} \int_{t_\parallel - \Delta}^{t_\parallel + \Delta} dx \left[\frac{g(x)}{x - t_\parallel - i t_\parallel} + \frac{g(2t_\parallel - x)}{-x + t_\parallel - i t_\parallel} \right] + \text{rest}. \tag{3.4}
\]

The integrand in the first integral in (3.4) is odd with respect to \(t_\parallel \) and thus vanishes after the integration over the symmetric interval around \(t_\parallel \). The second integral, on the other hand, is even with respect to \(t_\parallel \) and thus

\[
\mathcal{I} = \int_{t_\parallel}^{t_\parallel + \Delta} dx \left[\frac{g(x)}{x - t_\parallel - i t_\parallel} - \frac{g(2t_\parallel - x)}{x - t_\parallel + i t_\parallel} \right] + \text{rest}. \tag{3.5}
\]
We define Δ through a user-defined parameter M_1 so that $\Delta = M_1 \Delta p_\parallel$, where Δp_\parallel is the size of a grid step in the parallel direction. We then define $\delta = \Delta / M_p$, where M_p is another user-defined parameter. Except for cases in which $|t_i|$ is extremely small, we apply a trapezoidal integration over M_p steps of width δ to the integral in (3.5). The smoothness of $g(x)$ allows us to expand $g(x)$ around the nearest grid point of the M_1 grid points in the interval $[t_r, t_r + \Delta]$ using a Taylor series. By taking Δp_\parallel to be sufficiently small, we can retain just the first two terms in the series without losing significant accuracy. Since the integral in (3.5) does not converge numerically if $|t_i|$ is extremely small, we implement the following procedure when $|t_i| \lesssim t_{lim}$, where t_{lim} is a user-defined parameter. We first rewrite (3.5) using truncated Taylor expansions of $g(x)$ and $g(2t_r - x)$ around $x = t_r$ as

$$I = \int_{t_r}^{t_r + \Delta} dx \left[\frac{2it_i g(t_r)}{(x - t_r)^2 + t_i^2} + \frac{2g'(t_r)(x - t_r)^2}{(x - t_r)^2 + t_i^2} \right] + \text{rest.}$$

We determine $g(t_r)$ and $g'(t_r)$ through linear interpolation between the neighbouring grid points to t_r. The term proportional to $g'(t_r)$ in (3.6) converges numerically for any value of t_i. We set the term proportional to $g(t_r)$ equal to its small-t_i limit, namely

$$\int_{t_r}^{t_r + \Delta} dx \frac{2it_i g(t_r)}{(x - t_r)^2 + t_i^2} = i \pi g(t_r) \text{sgn}(t_i).$$

We use this method for both the integration of χ_j near poles and the principal-value integration that is necessary if $\gamma = 0$.

3.2. Analytic continuation

If $\gamma \leq 0$, the integration in (2.9) requires an analytic continuation into the complex plane. If f_{0j} were given as a closed algebraic expression, the analytic continuation would simply entail the evaluation of $f_{0j}(p_\perp, p_\parallel)$ at a complex value for p_\parallel in the non-relativistic case. In our case, however, f_{0j} is only defined on a real grid in p_\perp and p_\parallel, yet the analytic continuation of f_{0j} is still uniquely defined. This leads to the known mathematical problem of numerical analytic continuation (Cannon & Miller 1965; Reichel 1986; Fujiwara et al. 2007; Fu et al. 2012; Zhang & Ma 2013; Kranich 2014). Our solution for this problem is our hybrid analytic continuation scheme. We note that this approach is only relevant for damped modes, i.e. $\gamma \leq 0$.

Landau’s rule of integration around singularities (Landau 1946; Lifshitz & Pitaevskii 1981) leads to the following three cases with the appropriate residues for the evaluation of $I(p_\perp)$ for general γ:

$$I(p_\perp) = \int_{C_L} dp_\parallel G(p_\perp, p_\parallel) = \begin{cases} \int_{-\infty}^{+\infty} dp_\parallel G(p_\perp, p_\parallel) & \text{if } \gamma > 0, \\
\mathcal{P} \int_{-\infty}^{+\infty} dp_\parallel G(p_\perp, p_\parallel) + i \pi \sum \text{Res}_A(G) & \text{if } \gamma = 0, \\
\int_{-\infty}^{+\infty} dp_\parallel G(p_\perp, p_\parallel) + 2i \pi \sum \text{Res}_A(G) & \text{if } \gamma < 0, \end{cases}$$

where C_L is the contour of the Landau integration, which lies below the complex poles in the integrand. The integrations on the right-hand side of (3.8) are performed along
the real axis, and \(P \) indicates the principal-value integral. The sum sign indicates the summation over the residues of all poles \(A \) of the function \(G \). In a non-relativistic plasma, \(G \) has one simple pole, and thus

\[
\sum \text{Res}_A(G) = -\frac{m_j}{|k_p|} \Omega_j U T_n |_{p_j = p_{\text{pole}}},
\]

(3.9)

where \(p_{\text{pole}} = m_j(\omega - n \Omega_j)/k_p \) is the parallel momentum associated with pole \(A \).

It is a common approach to decompose the background distribution functions in terms of analytical expressions and then to evaluate these at the complex poles. Complete orthogonal basis functions such as Hermite, Legendre or Chebyshev polynomials are the prime candidates for such a decomposition since they can represent \(f_{0j} \) to an arbitrary degree of accuracy (Robinson 1990; Weideman 1995; Xie 2013). These approaches are useful when \(f_{0j} \) deviates only slightly from a Maxwellian. They require, however, very high orders of decomposition and are thus slow in the presence of typical structures that we see in the solar wind such as a proton core–beam configuration. Therefore, they are unsuitable for ALPS’s purpose, and we pursue a different approach, which we call the hybrid analytic continuation. The basic idea behind this approach is to integrate \(I \) numerically along the real axis whenever possible and to resort to an algebraic function for the sole purpose of the evaluation of \(\text{Res}_A(G) \) when necessary.

For the determination of an appropriate algebraic function, ALPS allows the user to choose an arbitrary combination of fit functions to represent \(f_{0j} \) and automatically evaluates the fits before the integration begins. The code evaluates the fits separately at each \(p_\perp \), so that no assumption is made as to the structure of \(f_{0j} \) in the \(p_\perp \)-direction. ALPS uses these functions only if a pole is within the integration domain and only if \(\gamma \leq 0 \). The intrinsic fit functions that the code can combine include a Maxwellian distribution,

\[
f_{0j} = \frac{1}{\pi^{3/2} m_j^3 w_{\perp j}^2 w_{\parallel}} \exp \left(-\frac{p_\perp^2}{m_j^2 w_{\perp j}^2} - \frac{(p_\parallel - m_j U_j)^2}{m_j^2 w_{\parallel}^2} \right),
\]

(3.10)

where \(w_{\perp j} \equiv \sqrt{2 k_B T_{\perp j}/m_j} \) (\(w_{\parallel j} \equiv \sqrt{2 k_B T_{\parallel j}/m_j} \)) is the thermal speed of species \(j \) in the direction perpendicular (parallel) with respect to \(B_0 \), \(T_{\perp j} \) (\(T_{\parallel j} \)) is the temperature of species \(j \) perpendicular (parallel) to \(B_0 \), \(k_B \) is the Boltzmann constant and \(U_j \) is the \(B_0 \)-parallel drift speed of species \(j \); a \(\kappa \)-distribution (Summers et al. 1994; Astfalk, Görler & Jenko 2015),

\[
f_{0j} = \frac{1}{m_j^3 w_{\perp j}^2 w_{\parallel}} \left[\frac{2}{\pi(2\kappa - 3)} \right]^{3/2} \frac{\tilde{\Gamma}(\kappa + 1)}{\tilde{\Gamma}(\kappa - 1/2)} \times \left\{ 1 + \frac{2}{2\kappa - 3} \left[\frac{p_\perp^2}{m_j^2 w_{\perp j}^2} + \frac{(p_\parallel - m_j U_j)^2}{m_j^2 w_{\parallel}^2} \right] \right\}^{-(\kappa + 1)};
\]

(3.11)

and a Jüttner distribution (Jüttner 1911; Chacón-Acosta, Dagdug & Morales-Técotl 2010),

\[
f_{0j} = \frac{1}{2 \pi m_j^3 c w_{\perp j}^2} K_2(2c^2/w_{\perp j}^2) \exp \left(-2 \frac{c^2}{w_{\perp j}^2} \sqrt{1 + \frac{|p|^2}{m_j c^2}} \right);
\]

(3.12)

where \(\kappa \) is the \(\kappa \)-index and \(K_2 \) is the modified Bessel function of the second kind. The Jüttner distribution is the thermodynamic equilibrium distribution if \(k_B T_j \gtrsim m_j c^2 \).
The exponential in (3.12) reduces to the Maxwellian \(\exp(-v^2/w^2)\) with a different \(p\)-independent normalisation factor for \(p^2/m^2c^2 \ll 1\). We use an automated Levenberg–Marquardt-fit algorithm (Levenberg 1944; Marquardt 1963) and describe the details of the fit routine in appendix B.

3.3. The poles in a relativistic plasma

The analytic continuation and pole handling in the relativistic case entail a further complication due to the non-trivial \(p\)-dependence of the resonant denominator in (2.9) (Buti 1962; Lerche 1968). We define a plasma to be relativistic when there is a significant number of particles at relativistic velocities. This can be the case in plasmas with relativistic temperatures \((k_B T_j \gtrsim m_j c^2)\) or in plasmas with relativistic beams \((P_j \gtrsim m_j c)\), where \(P_j\) is the drift momentum. Using the relativistic expression for \(\Omega_j\) in (2.4) shows that we can write for the pole of the function under the integral sign in (3.1)

\[
\frac{1}{\omega - k||v|| - n\Omega_j} = -\frac{1}{k||} \frac{\Gamma m_j}{(p|| - \omega/k|| + n\Omega_{0j}/k||)},
\]

where

\[
\Gamma \equiv \sqrt{1 + \frac{p_{\perp}^2 + p_{||}^2}{m_j^2c^2}}
\]

is the Lorentz factor. We define the dimensionless parallel momentum \(\tilde{p}_{||} \equiv p_{||}/m_j c\). The dimensionless parallel momentum associated with the relativistic pole is given by

\[
\tilde{p}_{\text{pole}} = \Gamma \frac{\omega}{k|| c} - \frac{n\Omega_{0j}}{k|| c}.
\]

We apply the technique proposed by Lerche (1967) to transform (2.9) from the \((p_{\perp}, p_{||})\) coordinate system to the \((\Gamma, \tilde{p}_{||})\) coordinate system (see also Swanson 2002; Lazar & Schlickeiser 2006; López et al. 2014, 2016). This transformation yields

\[
\chi_j = 2\pi m_j^3 c^3 \frac{\omega p_j}{\omega \Omega_{0j}} \int_1^\infty d\Gamma \int_{-\sqrt{r^2-1}}^{+\sqrt{r^2-1}} d\tilde{p}_{||} \frac{\partial f_{0j}}{\partial \tilde{p}_{||}} \frac{\partial f_{0j}}{\partial \Gamma} \tilde{e}_{||} \hat{e}_{\perp} \frac{\Omega_{0j}}{\omega} \frac{\partial f_{0j}}{\partial \tilde{p}_{||}} \left[\tilde{e}_{||} \hat{e}_{\perp} \frac{\Omega_{0j}}{\omega} \frac{\partial f_{0j}}{\partial \tilde{p}_{||}} \right]
\]

\[
- \sum_{n=-\infty}^{+\infty} \frac{\Omega_{0j}}{k|| c} \left(\frac{\partial f_{0j}}{\partial \Gamma} + \frac{k|| c}{\omega} \frac{\partial f_{0j}}{\partial \tilde{p}_{||}}\right) \tilde{T}_n \right]
\]

where

\[
\tilde{T}_n \equiv \left(\begin{array}{ccc}
\frac{n^2J_n^2}{\tilde{z}^2} & \frac{i n J_n Y_n^j}{\tilde{z}} & \frac{n J_n^2 \tilde{p}_{||}}{\tilde{z}} \\
\frac{i n J_n Y_n^j}{\tilde{z}} & \frac{(J_n')^2 \tilde{p}_{||} p_{\perp}}{\tilde{z}} & -i n J_n Y_n^j \tilde{p}_{||} \\
\frac{n J_n^2 \tilde{p}_{||}}{\tilde{z}} & i n J_n Y_n^j \tilde{p}_{||} p_{\perp} & \frac{J_n^2 \tilde{p}_{||}^2}{\tilde{z}}
\end{array}\right),
\]
We normalise all frequencies in units of the proton-cyclotron frequency Ω. Whenever ALPS performs a relativistic calculation and f-waves. We then set up Maxwellian or bi-Maxwellian distributions with ALPS. We compare the PLUME and ALPS results for quasi-parallel and quasi-perpendicular propagation in figure 1. The panels show both the real part ω and its imaginary part γ as functions of the parallel and perpendicular wavenumbers, respectively. We use $\beta_{\perp} = \beta_{\parallel} = 1$ for both protons and electrons, and $v_A/c = 10^{-4}$, where $\beta_{\perp} = 8\pi n_0 k_B T_{\perp}/B_0^2$ and $\beta_{\parallel} = 8\pi n_0 k_B T_{\parallel}/B_0^2$. We normalise all frequencies in units of the proton-cyclotron frequency Ω_{p} and all length scales in units of the proton skin depth $d_p = v_A/\Omega_{p}$. The momentum-space resolution for the ALPS calculation in the quasi-parallel limit is $N_{\parallel} = 320$, $N_{\perp} = 640$, $P_{\text{max,}||} = 8 m_p v_A$ and $P_{\text{max,}\perp} = 0.19 m_p v_A$. In the quasi-perpendicular limit, we use $N_{\perp} = 240$, $N_{\parallel} = 480$, $P_{\text{max,}||} = 6 m_p v_A$ and $P_{\text{max,}\perp} = 0.14 m_p v_A$. In both cases, we set $P_{\text{max,}||} = P_{\text{max,}\perp}$, $J_{\max} = 10^{-45}$, $M_1 = 5$, $M_p = 100$, $t_{\text{lim}} = 0.01$ and scan through k-space in 256 logarithmically spaced steps from $k_\parallel d_p = 10^{-2}$ to $k_\parallel d_p = 10$ and $k_\perp d_p = 10^{-2}$ to $k_\perp d_p = 10$, respectively. We study the accuracy of the results depending on the resolution in § 4.1. Figure 1 shows that ALPS reproduces these Maxwellian examples very well. We note that these plasma parameters represent typical solar-wind conditions at 1 au.

In order to illustrate another representation of the plasma dispersion relation, we show a comparison of dispersion maps from PLUME and ALPS in figure 2. Dispersion maps are diagrams of isocontours of constant $\lg |\det D|$, where D is the tensor from (2.12), in the $\omega_r-\gamma$ plane. Solutions to the hot-plasma dispersion relation appear as local minima in these diagrams. After calculating a dispersion map for a given k, ALPS automatically determines the locations of its local minima in terms of ω_r and γ. These minima represent ideal initial guesses for
Figure 1. Dispersion relations for the A/IC wave and the FM/W wave in a Maxwellian plasma in quasi-parallel (a) and quasi-perpendicular (b) propagation. For the calculations shown on (a), we keep \(k_\parallel d_p = 10^{-3} \) constant and scan through \(k_\perp \). For the calculations shown on (b), we keep \(k_\perp d_p = 10^{-3} \) constant and scan through \(k_\parallel \). The A/IC mode in quasi-perpendicular propagation corresponds to the kinetic Alfvén wave (KAW) at \(k_\perp d_p \gtrsim 1/\sqrt{\beta_\parallel} \). We compare ALPS with the standard Maxwellian solutions from PLUME for an electron–proton plasma with the same plasma parameters. Both numerical models agree well in both the real part \(\omega_r \) of the frequency and its imaginary part \(\gamma \).

Figure 2. Comparison of dispersion maps from PLUME (a) and ALPS (b) for \(k_\perp d_p = k_\parallel d_p = 10^{-3} \). The lines show isocontours of constant \(\log |\det D| \). The colour scheme varies from small \(\log |\det D| \) in blue to large \(\log |\det D| \) in red. Minima in this map correspond to solutions to the hot-plasma dispersion relation.

the Newton-secant root-finding search when scanning through \(k \). Although the calculation of a dispersion map still requires the calculation of all \(\chi_j \), it does not entail the application of the Newton-secant root-finding algorithm itself. We use a Maxwellian plasma model with \(\beta_\parallel = \beta_\perp = 1 \) for both protons and electrons, \(k_\perp d_p = k_\parallel d_p = 10^{-3} \) and \(v_A/c = 10^{-4} \). For the ALPS calculation, we use \(N_\perp = 240, N_\parallel = 480, P_{\text{max,}\parallel p} = P_{\text{max,}\perp p} = 6m_p v_A, P_{\text{max,}\perp e} = P_{\text{max,}\parallel e} = 0.14m_p v_A, J_{\text{max}} = 10^{-45} \), \(M_1 = 5, M_p = 100 \) and \(t_{\text{lim}} = 0.01 \). Both the PLUME and the ALPS calculations reveal seven solutions to the dispersion relation. We note that the point \(\omega_r = \gamma = 0 \) is a maximum and does not represent a solution to the dispersion relation. The
D. Verscharen and others

Figure 3. Comparison of dispersion relations for the A/IC instability (a) and the mirror-mode instability (b) from PLUME and ALPS. We use $T_{\perp p}/T_{\parallel p} = 3$. For the calculation of the A/IC instability, we keep $k_{\perp d_p} = 10^{-3}$ constant and scan through k_{\parallel}. For the calculation of the mirror-mode instability, we keep the angle $\theta = 75^\circ$ constant and scan through $|k|$.

solutions at $\omega_r = \pm 10^{-3} \Omega_{0p}$ and $\gamma = -2.3 \times 10^{-10} \Omega_{0p}$ are the forward and backward propagating A/IC waves. The solutions at $\omega_r = \pm 2 \times 10^{-3} \Omega_{0p}$ and $\gamma = -5.4 \times 10^{-5} \Omega_{0p}$ are the forward and backward propagating FM/W waves. The solutions at $\omega_r = \pm 1.2 \times 10^{-3} \Omega_{0p}$ and $\gamma = -7.3 \times 10^{-4} \Omega_{0p}$ are the forward and backward propagating slow waves (ion-acoustic waves). Lastly, the solution at $\omega_r = 0$ and $\gamma = -7.2 \times 10^{-4} \Omega_{0p}$ is the non-propagating slow mode, which is sometimes denoted ‘entropy mode’, (Verscharen et al. 2016; Verscharen, Chen & Wicks 2017). The comparison of both panels in figure 2 shows that ALPS reproduces these seven plasma modes under typical solar-wind conditions in the Maxwellian limit.

4.2. Anisotropic bi-Maxwellian distributions

PLUME, like most other standard hot-plasma dispersion-relation solvers, allows us to use anisotropic bi-Maxwellian representations for the background distribution functions. Such a configuration can lead to instability if the temperature anisotropy exceeds the threshold for an anisotropy-driven plasma instability. As an example for a propagating instability, we calculate the dispersion relation for the parallel A/IC instability (Harris 1961; Davidson & Ogden 1975; Yoon et al. 2010), and as an example for a non-propagating instability, we calculate the dispersion relation for the mirror-mode instability (Rudakov & Sagdeev 1961; Tajiri 1967; Southwood & Kivelson 1993). The thresholds for both of these instabilities fulfil $T_{\perp p} > T_{\parallel p}$. For this demonstration, we use PLUME to calculate ω_r and γ as functions of the wavenumber in a plasma with bi-Maxwellian protons and Maxwellian electrons using $\beta_{||p} = \beta_{\perp e} = \beta_{\perp e} = 1$, $T_{\perp p}/T_{\parallel p} = 3$ and $v_A/c = 10^{-4}$. We then set-up bi-Maxwellian f_0 tables with the same parameters and calculate the dispersion relations for both instabilities with ALPS. We show the results in figure 3. For the ALPS calculation, we use $N_{\perp} = 320$, $N_{\parallel} = 640$, $P_{\text{max,}||p} = 8 m_p v_A$, $P_{\text{max,}\perp p} = 13.9 m_p v_A$, $P_{\text{max,}\perp e} = P_{\text{max,}\perp e} = 0.19 m_p v_A$, $J_{\text{max}} = 10^{-45}$, $M_l = 5$, $M_p = 100$ and $t_{\text{lim}} = 0.01$. For the A/IC instability, we scan through k_{\parallel} from $k_{\parallel} d_p = 10^{-2}$ to $k_{\parallel} d_p = 10$ in 256
logarithmically spaced steps. For the mirror-mode instability, we scan through \(k \) from \(kd_p = 10^{-2} \) to \(kd_p = 5 \) in 154 logarithmically spaced steps and keep the angle \(\theta \equiv \arcsin(k_{\perp}/k) = 75^\circ \) constant. We study the accuracy of these results depending on the resolution in § A.2.

Both PLUME and ALPS show that the A/IC wave and the mirror mode are unstable in different wave-vector ranges for the given parameter set. The good agreement between the PLUME solutions and the ALPS solutions shows that ALPS successfully calculates the dispersion relations of both instabilities in a bi-Maxwellian plasma. Although the correct mirror mode exhibits \(\omega_r = 0 \), the ALPS solution shows a very small yet finite \(\omega_r \). We discuss this error and its dependence on the velocity-space resolution in § A.2.

4.3. Anisotropic \(\kappa \)-distributions

Astfalk et al. (2015) developed the code DSHARK to calculate dispersion relations in plasmas with bi-\(\kappa \)-distributions. As one example, these authors discuss the FM/W instability in an anisotropic electron–proton plasma with \(\kappa_p = \kappa_e = 8 \), \(\beta_{\parallel p} = 2 \), \(\beta_{\parallel e} = 4 \), \(T_{\perp p}/T_{\parallel p} = 0.4 \) and \(T_{\perp e}/T_{\parallel e} = 0.5 \) (see figure 1 from Astfalk et al. 2015). The angle between \(k \) and \(B_0 \) is constant for this calculation and set to \(\theta = 0.001^\circ \). We use DSHARK to reproduce this test case and set up \(\kappa \)-distributed \(f_0 \) tables with the same parameters in order to compare the DSHARK results with ALPS. We show this comparison in figure 4. In ALPS, we use \(N_{\perp} = 400 \), \(N_{\parallel} = 800 \), \(P_{\text{max,}\parallel p} = 10 m_p v_A \), \(P_{\text{max,}\perp p} = 6.32 m_p v_A \), \(P_{\text{max,}\parallel e} = 0.33 m_p v_A \), \(P_{\text{max,}\perp e} = 0.23 m_p v_A \), \(J_{\text{max}} = 10^{-45} \), \(M_I = 5 \), \(M_E = 500 \), \(t_{\text{lim}} = 0.01 \) and \(v_A/c = 10^{-4} \). We scan through \(k_\parallel \) from \(k_\parallel d_p = 10^{-1} \) to \(k_\parallel d_p \approx 3.42 \), where \(\omega_c \) changes its sign after 87 logarithmically spaced steps.

ALPS reproduces the DSHARK results for the FM/W instability well. The results also agree with the previous work by Lazar et al. (2011).
FIGURE 5. Dispersion relations of the quasi-parallel A/IC wave (solutions at low ω_r) and the ordinary wave (solutions at high ω_r) in a relativistic electron–positron pair plasma with Jüttner distributions. We keep $k_\perp d_p = 10^{-3}$ constant and scan through k_\parallel. (a) shows the real part of the frequency, and (b) shows the imaginary part of the frequency. The lines show ALPS solutions, and the crosses show the results from figure 1 of López et al. (2014). The three colours correspond to $\beta_{\parallel p} = \beta_{\parallel e} = 0.2$ (red), $\beta_{\parallel p} = \beta_{\parallel e} = 0.4$ (green) and $\beta_{\parallel p} = \beta_{\parallel e} = 1.0$ (blue) in both panels and for both modes.

4.4. Relativistic Jüttner distributions

As one example for a dispersion relation in a relativistic plasma, we reproduce the results by López et al. (2014) for an electron–positron pair plasma with a Jüttner distribution using $v_A/c = 1$, $m_p = m_e$, $\beta_{\parallel p} = \beta_{\parallel e} = (0.2, 0.4, 1.0)$ and $T_{\perp j} = T_{\parallel j}$ for both positrons and electrons. We set up a Jüttner-distributed f_0 table with the same parameters and calculate the dispersion relations of the A/IC wave and the Ordinary wave (O-mode) in the plasma, keeping the perpendicular wavenumber constant at $k_\perp d_p = 10^{-3}$. We use $N_\perp = 30$, $N_\parallel = 60$, $P_{\max} = 5m_p v_A$, $J_{\max} = 10^{-45}$, $M_1 = 5$, $M_p = 300$ and $t_{\lim} = 0.01$. Our interpolation method transforms the (p_\perp, p_\parallel) grid to the $(\Gamma, \tilde{p}_\parallel)$ grid with $N_\Gamma = 500$ and $N_{\tilde{p}_\parallel} = 500$ steps in Γ and \tilde{p}_\parallel, respectively. We scan through k_\parallel from $k_\parallel d_p = 10^{-1}$ to $k_\parallel d_p = 10$ in 128 logarithmically spaced steps. We show the results in figure 5. López et al. (2014) show their results for these parameters in their figure 1. Our comparison with the ALPS dispersion relation in figure 5 shows a good agreement and confirms our relativistic model. The deviation between the results from López et al. (2014) and ALPS is only visible in the real part of the frequency at the large-k_\parallel/low-ω_r end of the A/IC branches.

5. Discussion and conclusions

ALPS solves the relativistic and non-relativistic hot-plasma dispersion relations in a plasma with arbitrary background distribution functions. We have benchmarked ALPS against existing codes by comparing dispersion relations for waves and instabilities in Maxwellian, bi-Maxwellian, κ-distributed and relativistic Jüttner-distributed plasmas. In all cases, we find that ALPS agrees well with existing codes. This finding encourages us to apply ALPS to yet unexplored plasma environments in future work. We note that we have only tested ALPS in the regime $k \rho_c \ll 1$ and $k d_e \ll 1$ thus far, where $\rho_c \equiv w_{\perp e}/|\Omega_{0e}|$. There is no numerical limitation, however, that prevents us from applying the code to larger wavenumbers at or beyond electron scales.

An important application of ALPS will be the analysis of distribution functions measured by spacecraft in the solar wind. ALPS includes the necessary numerical framework to preprocess and format the spacecraft data so that they can serve as
The Arbitrary Linear Plasma Solver

The

\(f_0 \) tables for direct input (see appendix C). Especially, the upcoming missions Solar Orbiter and Parker Solar Probe will deliver plasma measurements with unprecedented energy and time resolution in the solar wind that will serve as the ideal input for ALPS. The vast majority of previous kinetic studies of waves and instabilities relied on bi-Maxwellian fits to the observed distribution functions and the use of a standard bi-Maxwellian code to solve the hot-plasma dispersion relation such as WHAMP, PLUME or NHDS. Our approach allows us, however, to relax the bi-Maxwellian assumption and to analyse the plasma behaviour more realistically. A great advantage of standard bi-Maxwellian solvers is their very high speed when solving the dispersion relation. The plots of dispersion relations shown in this paper require an ALPS run time between about one and ten hours on 32 processor cores, while PLUME solves the same dispersion relation for a bi-Maxwellian plasma within a few seconds. Therefore, we recommend the use of standard bi-Maxwellian solvers or solvers for \(\kappa \)-distributed plasmas to determine an adequate initial guess before using ALPS whenever the \(f_0 \) table is close to a bi-Maxwellian or \(\kappa \)-distribution, respectively.

Future comparisons of the results from standard codes such as PLUME with the results from ALPS will help to evaluate the quality of the previous bi-Maxwellian approaches and to refine our understanding of the role of instabilities in collisionless plasmas based on the actual distribution functions. For instance, our knowledge of the realistic value of certain instability thresholds is still very limited. Some in situ observations of kinetic plasma features in the solar wind lie above the thresholds of kinetic instabilities when calculated based on bi-Maxwellian background distributions (see, for example, Isenberg 2012). The general conjecture is, however, that the plasma is limited by the lowest instability threshold. A more realistic calculation based on the actual distribution functions may resolve this discrepancy. This concept applies, for example, to anisotropy-driven instabilities such as the A/IC instability (Hellinger et al. 2006; Bale et al. 2009; Maruca, Kasper & Gary 2012) or beam-driven instabilities such as the FM/W instability (Reisenfeld et al. 2001; Verscharen, Bourouaine & Chandran 2013; Verscharen & Chandran 2013). Also non-thermal electron configurations, which are known to carry a significant heat flux into the solar wind, require a non-bi-Maxwellian representation for the determination of the relevant instabilities that limit their heat flux (Feldman et al. 1975; Pilipp et al. 1987a; Pulupa et al. 2011; Salem et al. 2013). Another field of application of ALPS is the study of highly non-thermal plasma configurations related to reconnection events (Phan et al. 2006; Gosling 2007; Gosling et al. 2007; Egedal, Daughton & Le 2012; Egedal, Le & Daughton 2013). We also emphasise the applicability of ALPS for the determination of dispersion relations using distributions from numerical plasma simulations. Particle-in-cell or Eulerian plasma codes generate data directly suitable as \(f_0 \) tables for ALPS. Some of these numerical simulations use (realistically or artificially) relativistic plasma conditions. Therefore, ALPS’s ability to include relativistic effects will be very useful for the study of the wave properties and the stability of simulated plasmas.

Our resolution studies in appendix A offer some insight into the necessary resolution of the \(f_0 \) tables for a reliable determination of the plasma dispersion relation. In the shown applications, a minimum resolution of about \(N_{\perp} = 40 \) and \(N_{\parallel} = 80 \) has proven to be necessary for a good agreement between ALPS and the test results for (bi-)Maxwellian distributions. In a future extension of ALPS, we will include Nyquist’s method to automatically determine the stability of directly observed distribution functions (Klein et al. 2017, 2018). We also note that, in cases with \(k_{\parallel} \ll k_{\perp} \) and \(\omega_r \ll \Omega_{p0} \), the gyrokinetic limit is an appropriate simplification to the
full hot-plasma dispersion relation (Catto 1978; Howes et al. 2006; Kunz et al. 2015; Camporeale & Burgess 2017). The gyrokinetic dispersion relation does not require the sum over all $n \neq 0$ as in (2.9). Considering these lower numerical demands, it would be worthwhile to develop a gyrokinetic version of ALPS in the future.

Acknowledgement

We appreciate helpful comments and contributions from S. Markovskii and T. Brackett. The ALPS collaboration appreciates support from NASA grant NNX16AG81G. We present more details about the numerics on the website http://www.alps.space. The ALPS source code will be made publicly available on this website after our initial science phase. Computations were performed on Trillian, a Cray XE6m-200 supercomputer at UNH supported by the NSF MRI programme under grant PHY-1229408. D.V. was supported by the STFC Ernest Rutherford Fellowship ST/P003826/1. B.D.G.C. was supported in part by NASA grants NNX15AI80G and NNX17AI18G and NSF grant PHY-1500041. Work at UC Berkeley was supported in part by NSF/SHINE grant AGS-1622498 and NASA grants NNX14AJ70G, NNX16AI59G and NNX16AP95G.

Appendix A. Resolution studies

In order to understand the required resolution of the f_0 tables for calculations with ALPS, we compare results from PLUME with results from ALPS for the same plasma parameters using different resolutions in this appendix. For all calculations, we use $\beta_{\parallel} = \beta_{\perp} = 1$, $T_{\perp}/T_{\parallel} = 1$, $J_{\max} = 10^{-45}$, $M_{1} = 5$, $M_{p} = 100$ and $t_{\text{sim}} = 0.01$. A careful re-analysis of the A/IC-wave solutions using variations in κ over one order of magnitude each (not shown) reveals that the accuracy of the solutions depends only moderately on the numerical values of these parameters. We use $P_{\max,|| p}$ as a free parameter and set $N_{j} = 2N_{\perp}$, $P_{\max,|| e} = P_{\max,\perp e} = P_{\max,|| p} \sqrt{m_{e}/m_{p}}$ and $P_{\max,\perp p} = P_{\max,|| p} \sqrt{T_{\perp p}/T_{|| p}}$. We apply the same resolutions for the scans in k-space as those used to derive the corresponding figures in § 4. We define the resolution in momentum as $\Delta w_{j} \equiv P_{\max,|| j} / (N_{j} m_{j} w_{|| j})$ and the accuracy of the solution as $\Delta \omega_{r}/\omega_{r} \equiv |\omega_{r,\text{ALPS}} - \omega_{r,\text{PLUME}}|/\omega_{r,\text{PLUME}}$, where $\omega_{r,\text{ALPS}}$ is the solution from ALPS and $\omega_{r,\text{PLUME}}$ is the solution from PLUME. For κ-distributions, the appropriate resolution depends on both $\beta_{|| j}$ and κ. Instead of giving general guidelines for the resolution, we, therefore, recommend case-by-case convergence studies when calculating dispersion relations in plasmas with κ-distributions.

A.1. Maxwellian distributions

In figure 6, we show a resolution study for the A/IC wave in quasi-parallel propagation in an isotropic Maxwellian plasma. This figure complements our solutions shown in figure 1. The four panels represent different values of $P_{\max,|| j}$. In each panel, the diagram at the top compares the real part of the frequency from five ALPS calculations with different Δw_{j} to the Maxwellian solutions from PLUME. The diagram at the bottom compares the ratio between ω_{r} from the five ALPS calculations and ω_{r} from PLUME. The line associated with a given parameter run ends whenever ALPS loses the solution as it scans through $k_{|| j}$. For the parameters used in figure 6, $P_{\max,|| p} = 8m_{p}w_{p}$ with a resolution finer than $\Delta w_{j} = 0.1$ leads to a very good agreement with the PLUME solutions for ω_{r}. For wavenumbers below $1/d_{p}$, a lower value of $P_{\max,|| p}$ is sufficient. Figure 7 shows the same as figure 6, but giving the imaginary part
Figure 6. Resolution study for the real part of the frequency for the A/IC-wave solution in quasi-parallel propagation. We keep \(k_\perp d_p = 10^{-3}\) constant and scan through \(k_\parallel\).

of the frequency instead of its real part. This figure confirms our finding regarding the optimal resolution.

Figures 8 and 9 show the same as figures 6 and 7, but for quasi-perpendicular propagation instead of quasi-parallel propagation. The required resolution is lower in the quasi-perpendicular case than in the quasi-parallel case. The solutions with \(P_{\text{max,}||} = 4m_p w_p\) and \(\Delta w_j \leq 0.1\) lead to a very good agreement between the PLUME and ALPS solutions.

A.2. Anisotropic bi-Maxwellian distributions

In addition to our Maxwellian test, we study the dependence of the ALPS solutions on the resolutions for the bi-Maxwellian case with \(T_\perp/T_\parallel = 3\) as shown in figure 3. Figure 10 compares ALPS solutions for the A/IC instability in quasi-parallel propagation for different values of \(P_{\text{max,}||}\) and \(\Delta w_j\) with the solutions from PLUME for the real part of the frequency. Figure 11 compares PLUME and ALPS solutions for the imaginary part of the frequency. The solutions with \(P_{\text{max,}||} = 4m_p w_p\) and \(\Delta w_j \leq 0.05\) lead to a good agreement between PLUME and ALPS in both \(\omega_r\) and \(\gamma\).

In figure 12, we study the dependence of the solutions on the resolution for the mirror-mode instability with the same parameters as in figure 3. The correct solution of the mirror-mode instability has \(\omega_r = 0\); however, the ALPS solutions have finite values \(\omega_r \neq 0\). The value of \(\omega_r\) decreases with increasing \(\Delta w_j\). As Southwood & Kivelson (1993) point out, the mirror-mode instability is strongly influenced by particles with \(p_\parallel \approx 0\). The error in frequency \(\Delta \omega_r\) is determined by the resolution of the momentum grid around \(p_\parallel = 0\), where \(\Delta \omega_r \sim k_\parallel w_j \Delta w_j\). Figure 13 shows the
comparison of the imaginary part of the mirror-mode solutions. Like in the case of the A/IC instability, a resolution with $P_{\text{max,}p} = 4m_pw_{\parallel}p$ and $\Delta w_{\parallel} \lesssim 0.05$ leads to a good agreement between PLUME and ALPS. We note that there is a non-monotonic behaviour in the accuracy of the solutions in some cases (see, for example, the solutions for $\Delta w_{\parallel} = 0.2$, $\Delta w_{\parallel} = 0.1$, and $\Delta w_{\parallel} = 0.05$ in figure 13). This illustrates that an increase in resolution sometimes causes the code to lose a solution that it successfully finds at lower resolutions. Since this numerical problem eventually resolves itself after increasing the resolution further, we recommend applying a higher resolution whenever the code loses a solution.

Appendix B. Levenberg–Marquardt fit

For the hybrid analytic continuation, ALPS fits the f_0 table with a combination of pre-described algebraic expressions as described in § 3.2. We employ a Levenberg–Marquardt algorithm (Levenberg 1944; Marquardt 1963) to fit the distribution functions in p_{\parallel} with a superposition of an arbitrary number of Maxwellian distributions, κ-distributions and Jüttner distributions. The user can freely choose the number of fits and their superposition. We evaluate different fit parameters for each given value of p_{\perp}. We define the Maxwellian fitting function as

$$F_M(\hat{p}_{\parallel}) = u_1 \exp\left[-y\hat{p}_{\perp}^2 - u_2(\hat{p}_{\perp} - u_3)^2\right],$$

where u_k are the fit parameters, y is a constant user-defined parameter and \hat{p}_{\perp} and \hat{p}_{\parallel} are the normalised perpendicular and parallel momenta. The parameter y compensates
the otherwise strong p_\perp-dependence of u_1, making the fit more reliable. It is constant for all p_\perp. We choose this expression rather than a fit in p_\perp since it provides a greater flexibility in the p_\perp-domain compared to a two-dimensional fit in p_\perp and p_\parallel. The best choice for y is $\beta_\perp m_p/m_j$. The standard normalisation in ALPS uses $\hat{p}_\parallel = p_\parallel/m_p v_A$ and $\hat{p}_\perp = p_\perp/m_p v_A$. In cases with κ-distributed plasma components, we use

$$F_\kappa(\hat{p}_\parallel) = u_1 [1 + u_2 (\hat{p}_\parallel - u_3)^2 + y\hat{p}_\perp^2] u. \quad (B\ 2)$$

In cases with Jüttner-distributed plasma components, we use

$$F_j = u_1 \exp(-y\Gamma). \quad (B\ 3)$$

In this case, the best choice for y is $2c^2/w_j^2$. These fitting relations are easily extendable by the user to cover more general functions as needed.

We denote the discretised f_0 table of species j at constant p_\perp as $\hat{f}_{j,i}(\hat{p}_\parallel,i)$, the discrete steps in \hat{p}_\parallel as \hat{p}_\parallel,i, the vector of all fit parameters as u and the sum of all fit functions as $F(\hat{p}_\parallel)$. In the Jüttner-distributed cases, the coordinates are replaced with Γ and \hat{p}_\parallel accordingly. We define the residuals as $s_i = \hat{f}_{j,i} - F(\hat{p}_\parallel,i)$ and define $C = \sum_i s_i^2$. We denote the Jacobian of \hat{f}_j with respect to u as J. We use a superposition of analytical expressions for the Jacobian based on the given form of $F(\hat{p}_\parallel)$. The Levenberg–Marquardt algorithm uses an iterative step to update u of the form

$$u_{\text{new}} = u + [J^T J + \lambda \text{diag}(J^T J)]^{-1} J^T s, \quad (B\ 4)$$
where λ is a user-defined scalar. For the matrix inversion in (B 4), we use the \textbf{LU}-factorisation. Then we calculate the residuals s_{new} based on u_{new} and determine $C_{\text{new}} = |s_{\text{new}}|^2$. If $C_{\text{new}} \leq C$, we set u to u_{new}, reduce λ by a constant factor λ_f (user-defined, standard value is 10) and repeat the procedure. If $C_{\text{new}} > C$, we discard u_{new}, increase λ by the constant factor λ_f and repeat the procedure. In this way, we iteratively determine the fit parameters u until the fit converges (i.e. $C \leq \epsilon$ with a user-defined ϵ), or until the number of iterations reaches a user-defined maximum value. ALPS writes the fitted distribution into a separate output file so that a direct comparison with the original input distribution is possible.

Appendix C. The smoothed thin-plate spline interpolation

Spacecraft or other plasma data are typically not available on a dense Cartesian grid like the grid required for an f_0 table in ALPS. Therefore, our code includes an interpolation algorithm that fills gaps between data points. ALPS uses the same interpolation algorithm to create an equidistant grid in $(\Gamma, \tilde{p}_\|)$ space after the coordinate transformation in cases with relativistic poles. We use a polyharmonic-spline interpolation with the radial basis function of a thin-plate spline with smoothing (Powell 1994; Donato & Belongie 2002). For each species, we begin with the ‘coarse’ distribution function $\hat{f}_{c,\mu}$ which is given by N_c data points (index $\mu = 1 \ldots N_c$) with the associated coarse momentum coordinates $\hat{p}_{\perp c,\mu}$ and $\hat{p}_{\parallel c,\mu}$. The set $(\hat{f}_{c,\mu}, \hat{p}_{\perp c,\mu}, \hat{p}_{\parallel c,\mu})$ forms one data point. The coarse grid is typically not equally distributed in momentum space.
Figure 10. Resolution study for the real part of the frequency for the A/IC-instability solution in quasi-parallel propagation. We use a bi-Maxwellian plasma with $T_{\perp p}/T_{\parallel p} = 3$. We keep $k_{\perp d_p} = 10^{-3}$ constant and scan through k_{\parallel}.

For each species, the ‘fine’ grid of momentum coordinates is given by $\hat{p}_{\perp i,k}$ and $\hat{p}_{\parallel i,k}$ with $i = 1 \ldots N_{\perp}$ and $k = 1 \ldots N_{\parallel}$ (and correspondingly in the coordinates Γ and \hat{p}_{\parallel} for cases with relativistic poles). The fine grid corresponds to the actual f_0 table to be used as input in ALPS. The goal of our interpolation is to find the value of the distribution function $\hat{f}_{i,k}$ on all grid points (i, k). We define the vectors $w = (w_1, \ldots, w_{N_{\perp}})$, $c = (c_1, c_2, c_3)$, $\hat{f}_c = (\hat{f}_{c,1}, \ldots, \hat{f}_{c,N_{\perp}})$ and $0 = (0, 0, 0)$. We furthermore define the matrix

$$K_{\mu,\nu} = \begin{cases} r^2 \log(r) & \text{if } r \geq 1 \\ r \log(r') & \text{if } r < 1, \end{cases}$$

where $r \equiv \sqrt{(\hat{p}_{\perp c,\mu} - \hat{p}_{\perp c,\nu})^2 + (\hat{p}_{\parallel c,\mu} - \hat{p}_{\parallel c,\nu})^2}$. We also define the $(N_{\perp} \times 3)$ matrix P. Its μth row is given by $(1, \hat{p}_{\perp c,\mu}, \hat{p}_{\parallel c,\mu})$. The thin-plate spline interpolation requires us to solve the non-homogeneous linear system of equations

$$\begin{pmatrix} K + \alpha \mathbf{1} & P \\ P^T & 0 \end{pmatrix} \begin{pmatrix} w \\ c \end{pmatrix} = \begin{pmatrix} \hat{f}_c \\ 0 \end{pmatrix}$$

for the vectors w and c. α is a user-defined smoothing parameter ($\alpha = 0$ forces the fine grid to run through all points of the coarse grid), and $\mathbf{1}$ is the $(N_{\perp} \times N_{\perp})$ unit
Figure 11. Resolution study for the imaginary part of the frequency for the A/IC-instability solution in quasi-parallel propagation. We use a bi-Maxwellian plasma with $T_{\perp p}/T_{\parallel p} = 3$. We keep $k_{\perp} d_p = 10^{-3}$ constant and scan through k_{\parallel}.

Figure 12. Resolution study for the real part of the frequency for the mirror-mode-instability solution. We use a bi-Maxwellian plasma with $T_{\perp p}/T_{\parallel p} = 3$. We keep $\theta = 75^\circ$ constant and scan through $|k|$.

The interpolation is then given by

$$\hat{f}_{i,k} = c_1 + c_2 \hat{p}_{\perp,i,k} + c_3 \hat{p}_{\parallel,i,k} + \sum_{\mu=1}^{N_c} w_{i,k} \hat{R}_{\mu,i,k}.$$

(C 3)
where $R_{ik}^\mu \equiv \sqrt{(\hat{p}_{\perp,i,k} - \hat{p}_{\perp,c,k})^2 + (\hat{p}_{\parallel,i,k} - \hat{p}_{\parallel,c,k})^2}$. The numerically expensive part of the interpolation is the solution of (C.2). Since $K_{11} = 0$, a direct LU-factorisation is not possible. Therefore, we apply a LU-factorisation algorithm with partial pivoting through row permutations until $K_{11} \neq 0$.

REFERENCES

