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Parametric decay of oblique Alfvén waves in two-dimensional hybrid simulations
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Certain types of plasma waves are known to become parametrically unstable under specific plasma conditions,
in which the pump wave will decay into several daughter waves with different wavenumbers and frequencies.
In the past, the related plasma instabilities have been treated analytically for various parameter regimes and by
use of various numerical methods, yet the oblique propagation with respect to the background magnetic field
has rarely been dealt with in two dimensions, mainly because of the high computational demand. Here we
present a hybrid-simulation study of the parametric decay of a moderately oblique Alfvén wave having elliptical
polarization. It is found that such a compressive wave can decay into waves with higher and lower wavenumbers
than the pump.
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I. INTRODUCTION

Monochromatic plasma waves with certain properties are
known to be parametrically unstable and to decay into daughter
waves in a multiple-waves interaction process [1–7]. The
ubiquitous small-amplitude thermal fluctuations existing in
any plasma are considered as seeds for growing daughter waves
in the presence of a large-amplitude pump wave, if that has
the necessary characteristics and fulfills the required instability
criteria. Multiple-wave interactions provoke these instabilities.
This fact directly illustrates that they are nonlinear processes
by nature. The monochromatic initial condition makes the
parametric decay an illustrative example compared to other
nonlinear mechanisms. Therefore, it is of general interest for
a better understanding of more intricate nonlinear effects in
plasmas and other statistical systems ranging from classical
fusion [8,9] and space plasmas [10,11] to more exotic media
such as relativistic electron-positron plasmas [12,13].

Following the early analytical treatments, modern nu-
merical simulations are capable of modeling the parametric
decay [14,15] comprehensively. Kinetic simulations even
allow one to investigate in detail the interactions between
the participating particles and waves, and so can reveal in
particular the resultant particle heating, e.g., under conditions
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typical for the solar coronal holes [16]. This possibility
has brought the parametric decay process into the focus of
coronal-heating research. In the past decade, large-amplitude
magnetohydrodynamic waves have also been observed directly
in the solar chromosphere and corona [17]. They seem to
be mainly Alfvénic, yet with a smaller slow-mode-wave
compressive component, and appear intense enough to deliver
via dissipation sufficient thermal energy to the coronal ions
[18,19]. This makes them a promising energy source also
for the acceleration of the fast solar wind, even though the
details of the dissipation and the spectral transfer are not well
understood [20–22].

Most models made use of simplifications such as one-
dimensional geometry. But recently, the more powerful avail-
able computers have paved the way for fully two-dimensional
analyses, including the possibility of oblique propagation
of the mother and daughter waves [23,24]. In this context
there remain, however, many open physical questions. The
compressive component of the fluctuations, for example,
is long known to be important for the parametric decay.
Yet in the oblique case, the effects of compressibility are
not well analyzed or understood. Also, the direction of
propagation of the daughter-wave products and their ability
for resonant wave-particle heating are still unclear. This work
will address some of these aspects and issues with the aid
of numerical hybrid simulations. The treated plasma gains
further degrees of freedom by choosing higher dimensionality.
Since natural systems are never limited to a one-dimensional
geometry only, it is crucial to understand the consequences of
this advancement toward a more realistic modeling. Further
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complications have been treated in simplified cases before,
such as the influence of additional ionic species [25,26],
dusty components in the plasma [27–29], and high collision
rates [30]. The present work is supposed to provide a basis
for further studies of parametric instabilities under the refined
conditions adapted to the particular situation.

II. NUMERICAL METHOD

The so called A.I.K.E.F. (adaptive ion-kinetic electron-
fluid) code is a numerical hybrid code, which treats ions as
particles following the characteristics of the Vlasov kinetic
equation and electrons as a massless charge-neutralizing fluid.
Hybrid codes have been successfully applied in the past
to model plenty of plasma phenomena in the limit of low
frequencies compared to any frequency related to the electron
dynamics [31]. The dynamics of ions are appropriately
simulated as long as quasineutrality is satisfied. These con-
straints are often fulfilled in space plasmas. Therefore, hybrid
simulations have proven to be adequate models for effects such
as microinstabilities [32–34], the turbulent cascade [35–37],
or microphysics at planetary magnetospheres [38,39] to name
but a few examples.

The A.I.K.E.F. code has been described by Müller et al. [40]
and already been used for a treatment of waves and turbulence
in space plasmas [36]. The equations of motion solved for a
proton are

d �vp

dt
= qp

mp

(
�E + 1

c
�vp × �B

)
, (1)

d �xp

dt
= �vp, (2)

with the velocity �vp and the spatial location vector �xp. We
consider the Lorentz force, which acts on any particle with
charge qp and mass mp and is due to the electric field �E and
the magnetic field �B. The speed of light is denoted by c.

Concerning the electromagnetic fields involved, we use the
momentum equation of the massless electron fluid to deliver
the electric field as

�E = −1

c
�ue × �B − 1

nee
∇pe, (3)

where the electron bulk velocity is denoted by �ue, the number
density by ne, and its elementary charge by e. The magnetic
field is obtained from the induction equation, which means
from Faraday’s law,

∂ �B/∂t = −c∇ × �E. (4)

The electrons are assumed to be isothermal, and thus their
pressure pe depends on the electron number density according
to pe ∝ ne. The proton density and the proton bulk velocity �up

are obtained as the first two moments of the proton distribution
function, and quasineutrality connects the density of protons
and electrons.

The boundaries of the simulation box are set to be periodic,
and the particles are initialized with a Maxwellian velocity
distribution that is shifted to the given values for the initial bulk
velocities and has a width determined by the proton β, which is
set to βp = βe = 0.1. All spatial length scales are normalized
and given in units of the proton inertial length, �p = c/ωp,

with the proton plasma frequency ωp =
√

4πnpq2
p/mp. All

time scales are in units of the inverse proton gyrofrequency
�p = qpB/(mpc).

The two-dimensional integration box has a size of 1024 ×
1024 cells. Each cell is filled with 500 super-particles, which
represent the real number of the protons. For the vector quan-
tities, all three components are evaluated, and a divergence-
cleaning algorithm is applied to guarantee numerical stability.
A constant background magnetic field of the form �B0 = B0�ez is
set up, and B0 provides the normalization unit for all magnetic
fields.

The initial condition is a monochromatic Alfvén/ion-
cyclotron (A/IC) wave with a normalized amplitude of b =
0.2. Its polarization is determined by the Hall-MHD relations,
since this is the low-temperature limit of the hybrid equations
[41]. The wave propagates with an angle of ϑ = 10◦ with
respect to the background magnetic field. Such a wave is
elliptically polarized and has an initially compressive compo-
nent. The spatial domain has a size of roughly 250�p × 250�p,
restricted by the periodic connection on the boundaries.

III. RESULTS

After 50 000 time steps, corresponding to the time t =
500, the initial wave has decayed already. The resulting
two-dimensional spectrum is shown in Fig. 1. The initial
oblique pump wave is still visible as a bright dot at ky ≈ 0.06
and kz ≈ 0.38. Apparently, the wave energy has mainly been
transported along the initial propagation direction of the wave.
It seems to have a higher power up to kz = 1 in normalized
units, which means that here a spectral break should be
expected. There is an increased wave activity at higher ky ,
and significant additional power is distributed there. At low
values of kz, two broader perpendicular patterns are visible in
the side-bands of the pump.

Also, the density fluctuation spectrum in two dimensions
can be calculated from the simulation data. It is shown in
Fig. 2, which indicates that the main features visible in
the magnetic fluctuation spectrum also appear in that of the
density, and thus the waves possess compressive components.

FIG. 1. (Color online) Two-dimensional power spectral density of
the magnetic field fluctuations at t = 500. The straight line starting
at the origin (red) indicates the initial propagation direction with
ϑ = 10◦. The color coding represents the power spectral density in
arbitrary units.
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FIG. 2. (Color online) Two-dimensional power spectral density
of the density fluctuations at t = 500. The straight line starting at the
origin (red) indicates the initial propagation direction with ϑ = 10◦.
The color coding represents the power spectral density in arbitrary
units.

This is especially true for all components having a nonzero
ky . Owing to the lower overall level of these fluctuations,
some filamentary intermediate structures are distinctly visible.
These should be understood as representing the broad-band
compressive component of the daughter waves. They occur at
higher harmonics of the first side-bands, with spacing given
by the parallel wavenumber of the pump wave.

To study the power distribution in more detail, the 2D
Fourier transform can be cut and displayed along the direction
of the initial propagation. It corresponds to a cut along the
red lines in Figs. 1 and 2. The corresponding one-dimensional
power spectra are shown in Figs. 3 and 4.

The initial wave is still visible in both the magnetic field
fluctuations and the density fluctuations. Remember that the
initial wave was compressive already, due to its oblique
propagation implying compressibility. The initial wave loses
some energy as compared to the beginning energy. It is first
spread to different wavenumbers and then dissipated at the

FIG. 3. (Color online) One-dimensional power spectral density
for the magnetic field fluctuations at t = 500 along the initial direction
of propagation. Additionally, the initial spectrum is shown (green
dashed line).

FIG. 4. (Color online) One-dimensional power spectral density
for the density fluctuations at t = 500 along the initial direction of
propagation. Additionally, the initial spectrum is shown (green dashed
line).

small kinetic scales. Thus, the pump wave decays to daughter
waves with higher and lower wavenumbers in comparison to
the initial ones.

From the simulation, the dispersion of the daughter waves
can in general be determined along any direction in the (ky,kz)
plane. Since an enhancement of energy is seen along the
initial direction of propagation (i.e., along the red line in
Fig. 1), it is appropriate to calculate the dispersion along this
line. Therefore, a two-dimensional spatial Fourier transform is
applied, and a one-dimensional cut is taken along the direction
ϑ = 10◦ for 60 different time steps. They are separated by a
time difference of 1/�p and thus allow for a temporal Fourier
transformation to be performed.

The result of the spectral analysis is shown in the dispersion
plot of Fig. 5. The enhanced power in the (ky,kz) analysis is also
very well located in the (ω,k) plane at k ≈ 0.75 and ω ≈ 0.6.

FIG. 5. (Color online) One-dimensional dispersion analysis of
the magnetic field fluctuations along the direction ϑ = 10◦ at
t = 500. The color coding represents the power spectral density.
The enhancement in power corresponds to A/IC waves propagating
obliquely to the background magnetic field. The curved solid line
starting at the origin (red) shows the cold-plasma dispersion relation
for oblique A/IC waves with ϑ = 10◦.
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Comparing this point with the theoretical cold dispersion
analysis of oblique A/IC waves [42], shown as a red curve,
reveals that this point is located very close to the branch of this
wave mode. The width of the signal in this diagram is due to
the pump wave, which has a significant amplitude compared
to the background magnetic field. Therefore, waves other
than the pump wave encounter an inhomogeneous guiding
field due to the magnetic field of the pump wave being
superposed on the background field. The resulting total field
can be understood as an effective magnetic field, around which
the daughter waves propagate. This effect leads to a small
broadening and shift in the dispersion analysis.

Calculations with further, moderately oblique propagation
angles provide comparable results, especially the outcome that
the preferred direction of the daughter wave propagation is
along the initial pump wave direction.

IV. DISCUSSION AND CONCLUSIONS

The daughter waves, which are generated already after quite
a short time of the nonlinear evolution, are found to be mainly
aligned along the initial direction of pump wave propagation.
This can be understood as a consequence of the conservation
of wave momentum. In general, the wavevectors of the pump
wave and the two daughter waves have to form a vector triangle
to fulfill this conservation in a three-wave process. Other
arbitrary combinations would be possible for an interaction
between four or even more waves [43]. However, it seems
that the background magnetic field is not the most important
guiding vector but rather the initial wave propagation vector,
which determines the geometry of the daughter wave vector
system. The oblique-wave hybrid simulations performed by
Matteini et al. [24] can also be interpreted in this sense, even
though the authors favor the interpretation of a field-parallel
spectral transfer. However, a major difference to their setup
is our initialization with an elliptically polarized Hall-MHD
pump wave, apart from the higher numerical resolution
employed. The daughter waves with lower wavenumbers seem
to orient themselves more perpendicular to the background
field. The modulational instability can be understood as the
generation mechanism here and seems to favor this direction
of propagation.

An oblique wave is intrinsically compressive due to its
polarization. During its evolution and decay, it is thus prone
to generate a broad spectrum of compressive fluctuations.
It is important to remember, though, that the amplitude of

an oblique wave is in any case not arbitrary. Its intrinsic
compressive effects pose an upper limit, because negative
density values have to be avoided and are forbidden [44].

The dispersion relation of the decay products obtained from
the oblique two-dimensional simulation shows that the related
daughter waves are still A/IC waves, yet with higher wave
number and frequency. Other wave modes such as the fast-
mode/whistler branch, for example, do not appear. This result
is in agreement with previous treatments of the parametric
decay, which have shown that the A/IC wave is a typical and
major daughter product of the decay [10]. The initial oblique
wave with wavenumber k0 is prone to the decay instability
with k > k0 and the modulational instability with k < k0.
Dispersive effects let the decay instability generate A/IC
waves [45]. Obviously, this effect can occur very efficiently for
k � 0.6. Generally, daughter waves are only excited in certain
limited ranges but not on a broad range of wavenumbers.
The A/IC waves, however, can easily fulfill the condition
of cyclotron resonance for sufficiently high frequencies and
wavenumbers. Thus, there is an upper limit for the occurrence
of A/IC waves, essentially due to the onset of cyclotron
damping. This leads to quite a sudden cut in the spectrum
at k ≈ 0.9. The dispersion diagram together with this typical
onset of damping underlines the A/IC nature of the daughter
waves.

The temperature of the particles does not increase signifi-
cantly over the integration time in our simulations. This may be
due to a comparably low intensity of the daughter waves and to
the limited simulation time. One-dimensional simulations have
shown an increase and saturation of the particle temperatures,
owing to heating by resonant wave-particle interactions [26].
The temperature in the above simulations does, however,
increase if no divergence-cleaning algorithm is applied to the
magnetic fields. So, maybe a possible heating is suppressed
by the present schemes, or the heating observed in previous
simulations is mainly a numerical artifact. This question
cannot be answered conclusively here.
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